

MELSEC ST Series

Programmable Logic Controllers

User's Manual

Profibus/DP Head Module

SAFETY PRECAUTIONS

(Read these precautions before using.)

When using Mitsubishi equipment, thoroughly read this manual and the associated manuals introduced in this manual. Also pay careful attention to safety and handle the module properly.

The precautions given in this manual are concerned with this product. Refer to the user's manual of the network system to use for a description of the network system safety precautions.

These SAFETY PRECAUTIONS classify the safety precautions into two categories: "DANGER" and "CAUTION".

Depending on circumstances, procedures indicated by \triangle CAUTION may also be linked to serious results.

In any case, it is important to follow the directions for usage.

Store this manual in a safe place so that you can take it out and read it whenever necessary. Always forward it to the end user.

[DESIGN PRECAUTIONS]

If a communication error occurs in the network, the error station (MELSEC-ST system) shows the following behavior.All outputs turn OFF. (In the MELSEC-ST system, the output status at the time of error can be set to clear/hold/preset by using user parameters of each slice module. As "clear" is set by default, the outputs turn OFF when an error occurs. In the case where the system operates safely with the output set to "hold" or "preset", change the parameter settings.)Create in the program an interlock circuit that will ensure the system operates safely based on the communication status information.Failure to do so may cause an accident due to mis-output or malfunction.

Create an external fail safe circuit that will ensure the MELSEC-ST system operates safely, even when the external power supply or the system fails.

Accident may occur due to output error or malfunctioning.

- (1) The status of output changes depending on the setting of various functions that control the output. Take sufficient caution when setting for those functions.
- (2) Normal output may not be obtained due to malfunctions of output elements or the internal circuits.Configure a circuit to monitor signals which may lead to a serious accident.

[DESIGN PRECAUTIONS]

- Make sure to initialize the network system after changing parameters of the MELSEC-ST system or the network system. If unchanged data remain in the network system, this may cause malfunctions.
- Do not install the control wires or communication cables together with the main circuit or power wires. Keep a distance of 100 mm (3.94 inch) or more between them. Not doing so could result in malfunctions due to noise.

[INSTALLATION PRECAUTIONS]

- Use the MELSEC-ST system in the general environment specified in the MELSEC-ST system users manual. Using this MELSEC-ST system in an environment outside the range of the general specifications could result in electric shock, fire, erroneous operation, and damage to or deterioration of the product.
- Mount the head module and base module on the DIN rail securely (one rail for one module) referring to the MELSEC-ST system users manual and then fix them with stoppers. Incorrect mounting may result in a fall of the module, short circuits or malfunctions.
- Secure the module with several stoppers when using it in an environment of frequent vibration. Tighten the screws of the stoppers within the specified torque range. Undertightening can cause a drop, short circuit or malfunction. Overtightening can cause a drop, short circuit or malfunction due to damage to the screw or module.
- Make sure to externally shut off all phases of the power supply for the whole system before mounting or removing a module. Failure to do so may damage the module.
 - (1) Online replacement of the power distribution module and/or the base module is not available. When replacing either of the modules, shut off all phases of the external power supply.

Failure to do so may result in damage to all devices of the MELSEC-ST system.

(2) The I/O modules and the intelligent function modules can be replaced online. Since online replacement procedures differ depending on the module type, be sure to make replacement as instructed.

For details, refer to the chapter describing the online module change in the user's manual of the head module (for the I/O module) or the corresponding intelligent function module.

• Do not directly touch the module's conductive parts or electronic components. Doing so may cause malfunctions or failure of the module.

[INSTALLATION PRECAUTIONS]

- Make sure to securely connect each cable connector. Failure to do so may cause malfunctions due to poor contact.
- DIN rail must be conductive; make sure to ground it prior to use. Failure to do so may cause electric shocks or malfunctions. Undertightening can cause a drop, short circuit or malfunction. Overtightening can cause a drop, short circuit or malfunction due to damage to the screw or module.

[WIRING PRECAUTIONS]

• Completely turn off the external power supply when installing or placing wiring. Not completely turning off all power could result in electric shock or damage to the product.

- Make sure to ground the control panel where the MELSEC-ST system is installed in the manner specified for the MELSEC-ST system. Failure to do so may cause electric shocks or malfunctions.
- Check the rated voltage and the terminal layout and wire the system correctly. Connecting an inappropriate power supply or incorrect wiring could result in fire or damage.
- Tighten the terminal screws within the specified torque. If the terminal screws are loose, it could result in short circuits, fire, or erroneous operation. Overtightening may cause damages to the screws and/or the module, resulting in short circuits or malfunction.
- Prevent foreign matter such as chips or wiring debris from entering the module. Failure to do so may cause fires, damage, or erroneous operation.
- When connecting the communication and power supply cables to the module, always run them in conduits or clamp them. Not doing so can damage the module and cables by pulling a dangling cable accidentally or can cause a malfunction due to a cable connection fault.
- When disconnecting the communication and power supply cables from the module, do not hold and pull the cable part. Disconnect the cables after loosening the screws in the portions connected to the module. Pulling the cables connected to the module can damage the module and cables or can cause a malfunction due to a cable connection fault.

[STARTUP AND MAINTENANCE PRECAUTIONS]

- Do not touch the terminals while power is on.
 Doing so could cause shock or erroneous operation.
- Make sure to shut off all phases of the external power supply for the system before cleaning the module or tightening screws.

Not doing so can cause the module to fail or malfunction.

[STARTUP AND MAINTENANCE PRECAUTIONS]

- Do not disassemble or modify the modules.
 Doing so could cause failure, erroneous operation, injury, or fire.
- Do not drop or give a strong impact to the module since its case is made of resin. Doing so can damage the module.
- Make sure to shut off all phases of the external power supply for the system before mounting/removing the module onto/from the control panel. Not doing so can cause the module to fail or malfunction.
- Before handling the module, make sure to touch a grounded metal object to discharge the static electricity from the human body.
 Failure to do say cause a failure or malfunctions of the module.
- When using any radio communication device such as a cellular phone, keep a distance of at least 25cm (9.85 inch) away from the MELSEC-ST system. Not doing so can cause a malfunction.

[DISPOSAL PRECAUTIONS]

• When disposing of this product, treat it as industrial waste.

REVISIONS

* The manual number is given on the bottom left of the back cover.

Print Date	* Manual Number	Revision
Dec., 2003	SH(NA)-080436ENG-A	First edition

Japanese Manual Version SH-080435-A

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 2003 MITSUBISHI ELECTRIC CORPORATION

INTRODUCTION

Thank you for choosing the ST1H-PB MELSEC-ST PROFIBUS-DP head module. Before using the module, please read this manual carefully to fully understand the functions and performance of the ST1H-PB MELSEC-ST PROFIBUS-DP head module and use it correctly.

CONTENTS

SAFETY PRECAUTIONS	A- 1
REVISIONS	A- 5
CONTENTS	A- 6
About Manuals	A- 9
Compliance with the EMC Directive and the Low Voltage Directive	A- 9
How to Read Manual	A-10
About the Generic Terms and Abbreviations	A-12
Term definition	A-13
Packing List	A-14
1 OVERVIEW	1- 1 to 1- 5
1.1 Features	
2 SYSTEM CONFIGURATION	2- 1 to 2- 2

3 SPECIFICATIONS	3- 1 to 3-31
3.1 Performance Specifications	
3.2 Communication between Master Station and MELSEC-ST System	
3.2.1 Input data specifications	
3.2.2 Output data specifications	3-14
3.2.3 I/O data used by head module	
3.3 Head Module Processing Time	
3.3.1 ST bus cycle time	
3.3.2 Input transmission delay time	
3.3.3 Output transmission delay time	
·	

4 FUNCTIONS

4- 1 to 4-32

4.1 Function List	
4.2 Network Functions	
4.2.1 I/O data communication function	
4.2.2 Global control function	
4.2.3 Extended diagnostic information notification function	
4.2.4 Swap function	
4.2.5 I/O data consistency function	
4.3 Control Functions	
4.3.1 Setting of output status at module error	
4.3.2 Status monitor	
4.3.3 Intelligent function module parameter read/write	

4.4.1 Precautions for the online module change	
4.4.2 Procedures for online module change	
4.4.3 Online module change using head module buttons	
4.4.4 Online module change from GX Configurator-ST	
5 PRE-OPERATION PROCEDURE AND SETTING	5- 1 to 5-13

5.1.1 Handling precautions	1
2 Pre-operation Procedure and Setting5-	2
3 Part Names and Settings5-	3
5.3.1 Setting of FDL address setting switches	6
5.3.2 Reset operation	9
4 Self-diagnostics	10
5 Wiring	11
5.5.1 PROFIBUS cable wiring	11
5.5.2 Wiring precautions	13

6 PARAMETER SETTING

6.1 Select Modules	3- 3	2
6.1.1 Selection and setting of maximum input/output points6	3- 3	3
6.1.2 User parameter size6	<u>ð</u> - 4	4
6.1.3 Parameter setting example6	3- !	5
6.1.4 Word input/output points of intelligent function modules6	3- (9
6.2 User Parameters	3-12	2

7 PROGRAMMING

7.1 When Using QJ71PB92D as Master Station	7- 1
7.1.1 Program example available when auto refresh is used in QJ71PB92D	
7.1.2 Program example available when auto refresh is not used in QJ71PB92D	7-19
7.2 When Using AJ71PB92D/A1SJ71PB92D as Master Station	

8 COMMANDS

8-1 to 8-18

7- 1 to 7-33

8.1 Command Overview	8- 1
8.2 Commands	8- 4
8.2.1 Operating status read request (Command No.: 0100 H)	8-6
8.2.2 Error code read request (Command No.: 0101 н)	8-10
8.2.3 Error history read request (Command No.: 0102 н)	8-14
8.3 Program Examples	8-15
8.4 Values Stored into Command Execution Result	8-17

6-1 to 6-12

_

9 TROUBLESHOOTING	9- 1 to 9-16
9.1 When I/O data cannot be communicated	
9.1.1 When RUN LED is off	
9.1.2 When BF LED is on	
9.1.3 When input data is erroneous	
9.1.4 When output data is erroneous	
9.2 When ERR. LED is on or flickering	
9.2.1 Error code reading operation	
9.2.2 Error code list	9-10
9.3 When command cannot be executed	9-15
APPENDICES	App-1 to App-15

Appendix 1 External Dimensions	App- 1
Appendix 2 MELSEC-ST System Setting Sheet	Арр- 3
Appendix 2.1 Maximum input/output points setting sheet	Арр- 3
Appendix 2.2 Input data assignment sheet	App- 4
Appendix 2.3 Output data assignment sheet	Арр-10
INDEX	Index-1 to Index-2

|--|

Index- 1 to Index- 2

About Manuals

The following manuals are related to this product. Referring to this list, please request the necessary manuals.

Relevant Manuals

Manual Name	Manual Number (Model Code)
MELSEC-ST System User's Manual Explains the system configuration of the MELSEC-ST system and the performance specifications, functions, handling, wiring and troubleshooting of the power distribution modules, base modules and I/O modules. (Sold separately)	SH-080456ENG (13JR72)
GX Configurator-ST Version 1 Operating Manual Explains how to operate GX Configurator-ST, how to set the intelligent function module parameters, and how to monitor the MELSEC-ST system. (Sold separately)	SH-080439ENG (13JU47)

Compliance with the EMC Directive and the Low Voltage Directive

When incorporating the Mitsubishi MELSEC-ST system that is compliant with the EMC directive and the low voltage directive into other machine or equipment and making it comply with the EMC directive and the low voltage directive, refer to "EMC Directive and Low Voltage Directive" of the MELSEC-ST System User's Manual. The CE logo is printed on the rating plate of the MELSEC-ST system products compliant to the EMC Directive and the Low Voltage Directive.

For making this product comply with the EMC directive and the low voltage directive, please refer to "EMC Directive and Low Voltage Directive" of the MELSEC-ST System User's Manual.

How to Read Manual

This manual explains each area for input data and output data using the following symbols.

(1) Data symbol

(2) Input data

Data symbol		Area	Unit	Detail data No. notation	
Br	Br.00 to Br.FF	Bit Input Area	1 bit/1 signal	Hexadecimal	
Er	Er.00 to Er.FF	Error Information Area	1 bit/1 signal	Hexadecimal	
Mr	Mr.0 to Mr.127	Module Status Area	1 bit/1 signal	Decimal	
Cr	*1	Command Result Area	1 word/1 signal	Decimal	
Wr	Wr.00 to Wr.33	Word Input Area	1 word/1 signal	Hexadecimal	

*1: Following shows the data symbols and the corresponding detail areas within the

command result area.

Data symbol		Area		
Cro	Cr.0 (15 - 8)	Command Execution Area		
01.0	Cr.0 (7 - 0)	Start Slice No. of Execution Target		
Cr.1		Executed Command No.		
Cr.2		Response Data 1		
Cr.3		Response Data 2		

(3) Output data

Data symbol		Area	Unit	Detail data No. notation	
Bw	Bw.00 to Bw.FF	Bit Output Area	1 bit/1 signal	Hexadecimal	
Ew	Ew.00 to Ew.FF	Error Clear Area	1 bit/1 signal	Hexadecimal	
Sw	Sw.0 to Sw.7	System Area	1 word/1 signal	Decimal	
Cw	*1	Command Execution Area	1 word/1 signal	Decimal	
Ww	Ww.00 to Ww.33	Word Output Area	1 word/1 signal	Hexadecimal	

*1: Following shows the data symbols and the corresponding detail areas within the command execution area.

Data symbol	Area		
Cw.0	Start Slice No. of Execution Target		
Cw.1	Command No. to be Executed		
Cw.2	Argument 1		
Cw.3	Argument 2		

About the Generic Terms and Abbreviations

Unless otherwise specified, this manual uses the following generic terms and abbreviations to explain the head module.

Generic Term/Abbreviation	Description			
Head module	ST1H-PB, MELSEC-ST PROFIBUS-DP compatible head module.			
PROFIBUS-DP	PROFIBUS-DP network.			
Bus refreshing module	Module that distributes the external SYS. power supply and external AUX. power supply among the head module and slice modules.			
Power feeding module	Module that distributes external AUX. power supply among slice modules.			
Power distribution module	Bus refreshing module and Power feeding module.			
Base module	Module that transfers data/connects between the head module and slice modules, and between slice modules and external devices.			
Input module	Module that handles input data in bit units.			
Output module	Module that handles output data in bit units.			
Intelligent function module	Module that handles input/output data in word units.			
I/O module	Input module and output module.			
Slice module	Module that can be mounted to the base module: power distribution module, I/O module and intelligent function module.			
MELSEC-ST system	System that consists of head module, slice modules, end plates and end brackets.			
GX Configurator-ST	SWnD5C-STPB-E type products. (n: 1 or later)			
Configuration software	Software used to set slave parameters for head module and slice modules.(e.g., GX Configurator-DP)			

Term definition

The following explains the meanings and definitions of the terms used in this manual.

Term	Definition					
Master station	Class 1 master station that communicates I/O data with slave stations.					
Slave station	Device that communicates I/O data with the master station.					
Repeater	Device that connects PROFIBUS-DP segments.					
Bus terminator	Terminator that is connected to both ends of each PROFIBUS-DP segment					
FDL address	Address assigned to the master station/slave station.					
Extended diagnostic	Information that is notified from the slave station to the master station when an error occurs at a					
information	slave station.					
Clave perometer	The slave station parameter (including user parameter) set by the master station.					
Slave parameter	The setting items are described in the GSD file.					
	The electronic file that includes description of the slave station parameter.					
GOD IIIe	The file is used to set slave parameters by the master station.					
	Data sent from the head module to the master station.					
	The data consists of the following areas.					
	Br Bit Input Area					
Input data	Information Area					
input uata	Er Error Information Area					
	Mr Module Status Area					
	Cr Command Result Area					
	Wr Word Input Area					
	Data that the head module receives from the master station.					
	The data consists of the following areas.					
	Bw Bit Output Area					
	 Request Area 					
	Ew Error Clear Area					
	Sw System Area					
	Cw Command Execution Area					
	Ww Word Output Area					
I/O data	Data (input data, output data) transferred between the head module and the master station.					
Br.n bit input	Bit input data of each module.					
Bw.n bit output	Bit output data of each module					
Wr n word input	Word (16-bit) input data of an intelligent function module.					
word input	In the case of analog input module, the digital output data value is stored.					
M/w n word output	Word (16-bit) output data of an intelligent function module.					
word output	In the case of analog output module, the digital setting data value is stored.					
Information area	Bit/Word input data for checking each module status and command execution results.					
Request area	Bit/Word output data for requesting each module to clear errors/to execute commands.					
Number of occupied I/O	The area, that is equivalent to the occupied I/O points, is occupied in Br Bit Input Area/ Bw Bit					
points	Output Area.					
	No. assigned to every 2 occupied I/O points of each module. This numbering starts by assigning					
Slice No.	"0" to the head module and then proceeds in ascending order. (The maximum value No. is 127).					
	The No. is used for specifying the execution target.					
	Requesting from the master station in order to read the module status, to set/control the intelligent					
Command	function module command parameters.					
ST bus cycle time	Processing time for the head module to refresh the input/output status of each slice module.					
	PROFIBUS-DP processing time for the master station to perform cyclic transfer with each slave					
Bus cycle time	station.					

Packing List

The following gives the packing list of the head module.

Model name	Quantity	
ST1H-PB	ST1H-PB MELSEC-ST PROFIBUS-DP head module	1
ST1A-EPL	ST1A-EPL end plate	1
ST1A-EBR	ST1A-EBR end bracket	2

1 OVERVIEW

This manual explains the specifications, functions, pre-operation procedures and troubleshooting of the ST1H-PB MELSEC-ST PROFIBUS-DP head module (hereafter referred to as the head module).

The head module is used to connect a MELSEC-ST system to a PROFIBUS-DP network. (The head module operates as a slave station of a PROFIBUS-DP network.)

<System using QJ71PB92D>

1.1 Features

The head module has the following features.

(1) MELSEC-ST system can be connected to PROFIBUS-DP network By mounting this module as the head module of a MELSEC-ST system, the MELSEC-ST system can be connected to the PROFIBUS-DP network. The head module complies with EN50170 Volume 2 (Part 1, 2, 3, 4, 8) and communicates with the master station as a PROFIBUS-DP slave station.

(2) Controlling the MELSEC-ST system

The head module receives data output from the master station, stores the data into the output receiving area, and uses them to control each slice module. Also, the head module gathers various information such as the input status data from each slice module into the input sending area, and sends them to the master station as input data.

- (3) Functions for communication with master station Using the following functions, the head module can communicate with the master station.
 - (a) I/O data size selection

The head module uses input data (head module \rightarrow master station) and output data (master station \rightarrow head module) to communicate with the master station.

By selecting the maximum input/output points appropriate for the MELSEC-ST system configuration on the head module, the input/output data communicated with the master station can be adjusted to the optimum size. Also, the maximum I/O points can be set to a slightly larger size for future expansion of the MELSEC-ST system. (Refer to Section 6.1.1.)

(b) Supporting the global control functions

The head module supports the global control functions. Using the commands (SYNC, UNSYNC, FREEZE, UNFREEZE) sent by the master station, the refresh of the head module I/O data can be controlled from the master station. (Refer to Section 4.2.2.)

(c) Extended diagnostic information notification function When an error occurs in a slice module, the master station can be notified of the error as extended diagnostic information. When the slice module is restored to normal, the master station is also notified of it. (Refer to Section 4.2.3.)

(d) Swapping of I/O data or extended diagnostic information bytes When I/O data are sent to or received from the master station or when extended diagnostic information is sent to the master station, their high and low bytes can be swapped in word units.

This function eliminates the need for a high/low byte swapping program on the master station side, simplifying the program. (Refer to Section 4.2.4.)

- (4) Controlling various slice modules The head module can control various MELSEC-ST slice modules in the same system.
 - (a) Up to 63 slice modules can be mounted The head module accepts up to 63 slice modules (up to 26 intelligent function modules).
 - (b) Error status and mounting status of each slice module can be checked

In each of input data area in the head module, the error status, mounting status, etc. of each slice module can be checked.

(c) Commands can be executed from master station By executing commands from the master station using the command

execution area of output data, the following is available.
Confirming the operating statuses of the bead module and each s

- Confirming the operating statuses of the head module and each slice module
- Reading error codes of the head module and/or each slice module
- Reading the head module error history
- · Setting intelligent function module command parameters

(d) Output status at module error

Whether the refresh of output data to the other normally-operating slice module will be stopped or continued when an error occurs in a slice module can be preset. (Refer to Section 4.3.1.)

(5) GX Configurator-ST available

Using the personal computer where optional GX Configurator-ST is preinstalled and connecting it to the head module, such operations as parameter setting, system monitor, forced output test and online module change can be performed easily for the MELSEC-ST system.

Refer to Section 4.1 for the functions available for GX Configurator-ST.

(6) Online module change

The I/O modules and intelligent function modules can be replaced without stopping the MELSEC-ST system. (Refer to Section 4.4.)

2 SYSTEM CONFIGURATION

This chapter explains the system configuration in which the head module is used.

*1: For the MELSEC-ST system configuration, refer to the MELSEC-ST System User's Manual.*2: For the system configuration for use of GX Configurator-ST, refer to the GX Configurator-ST Manual.

REMARK

Prepare the PROFIBUS cable and bus terminator on the user side. Refer to Section 5.5 for PROFIBUS cable wiring and bus terminal.

MEMO

2

3 SPECIFICATIONS

This chapter explains the performance specifications of the head module. For the general specifications of the head module, refer to the MELSEC-ST System User's Manual.

3.1 Performance Specifications

Item		m	Specifications				
PROFIBL	JS-DP s	station type	Slave station (compliant with EN50170 Volume 2 (Part 1, 2, 3, 4, 8))				
Applicable FDL address		address	0 to 99 *1				
Maximum	n input/c	output points					
I/O data s	size		Varies depending on the maximum input output points. (Refer to (1) in this section)				
Maximum sli <u>c</u> e mod	n numbe lules	er of connected	_				
In 32-p	point m	ode	14 modules *2				
In 64-p	point m	ode	30 modules *2				
In 128	-point r	node	62 modules *2				
In 256	-point r	node	63 modules *2				
Number o	of occup	pied I/O points	4 input and 4 output points				
Number o	of occup	pied slices	2				
Informatio	on	Input data	Br.n : Number of occupancy 4, Er.n : Number of occupancy 4, Mr.n : Number of occupancy 2, Wr.n : Number of occupancy 0				
amount		Output data	Bw.n: Number of occupancy 4, Ew.n: Number of occupancy 4, Ww.n: Number of occupancy 0				
Transmis	sion sp	ecifications	_				
Electri charac	ical star cteristic	ndards and s	EIA-RS485 compliant				
Applic	able ca	ble	Shielded twisted pair cable (Type A) *3				
Netwo	ork confi	iguration	Bus type (tree type when repeaters are used)				
Data li	ink met	hod	Polling				
Transr metho	mission d	encoding	NRZ				
Transr	mission	speed *4	9.6kbps to 12Mbps (refer to (2) in this section)				
Transr	mission	distance	Varies depending on the transmission speed. (refer to (2) in this section)				
Maximum number of repeaters		mber of	3 repeaters per network				
Maximum number of stations		mber of stations	32 stations (including repeaters) per segment				
Number of connection nodes		nnection nodes	32 nodes per segment				
5V DC internal current consumption		urrent	0.530A				
External dimensions		ons	114.5 (4.51 in.) (H) $ imes$ 50.5 (1.99 in.) (W) $ imes$ 74.5 (2.93 in.) (D) [mm]				
Weight			0.10 kg				

*1: Factory-set to "FDL address 0".

*2: Configure the system within the range where the conditions in Section 6.1 (1) are satisfied.

*3: Refer to Section 5.5.1 for details of the cable.

*4: Within ±0.3% for transmission speed control (EN50170 Volume 2 compliant)

(1) I/O data sizes

The following table indicates the data sizes for maximum input/output points. Refer to Section 3.2.1 and Section 3.2.2 for the I/O data offset addresses.

Maximum	32-point mode		64-point mode		128-point mode		256-point mode	
input/output points Item	Input	Output	Input	Output	Input	Output	Input	Output
Bit I/O points	32 bits	32 bits	64 bits	64 bits	128 bits	128 bits	256 bits	256 bits
	Max. 52	Max. 52	Max. 52	Max. 52	Max. 52	Max. 52	Max. 32	Max. 32
Word I/O points	words	words	words	words	words	words	words	words
	(Variable)	(Variable)	(Variable)	(Variable)	(Variable)	(Variable)	(Variable)	(Variable)
Request/Information area	14 bytes	14 bytes	20 bytes	20 bytes	32 bytes	32 bytes	56 bytes	56 bytes
Tatal	Max. 122	Max. 122	Max. 132	Max. 132	Max. 152	Max. 152	Max. 152	Max. 152
างเล	bytes	bytes	bytes	bytes	bytes	bytes	bytes	bytes

(2) Transmission distance

Transmission speed	Transmission distance [m/segment]	Maximum transmission distance when using repeater [m/network] *1			
9.6kbps					
19.2kbps	1200m/2027 ft \/cogmont	1900m(15749 ft)/notwork			
45.45kbps		4800m(15748 ft.)/network			
93.75kbps					
187.5kbps	1000m(3281 ft.)/segment	4000m(13123 ft.)/network			
500kbps	400m(1312 ft.)/segment	1600m(5249 ft.)/network			
1.5Mbps	200m(656 ft.)/segment	800m(2625 ft.)/network			
3Mbps					
6Mbps	100m(328 ft.)/segment	400m(1312 ft.)/network			
12Mbps					

*1: The maximum transmission distance in the above table is based on the example of using 3 repeaters.

Use the following expression when increasing the transmission distance using repeaters.

Maximum transmission distance [m/number of networks] =

(number of repeaters + 1) \times transmission distance [m/segment]

3.2 Communication between Master Station and MELSEC-ST System

For communication between the master station and MELSEC-ST system, use input data sent from the head module to the master station and output data sent from the master station to the head module.

[Processing outline of MELSEC-ST system \rightarrow Master station]

- 1) The status data of the external device are imported to the input status area of the slice module.
- 2) The input status data of each slice module is stored into the input sending area of the head module.
- 3) The input data in the input sending area is sent to the corresponding input image area in the master station.

 $[Processing outline of Master station \rightarrow MELSEC-ST system]$

- A) The corresponding output image is sent from the master station to the head module.
- B) The output data received in the output receiving area of the head module is refreshed to the output status area of the corresponding slice module.
- C) The output status data of the slice module is output to the external device.
- (1) Input data

The following table indicates the construction of input data.

Refer to Section 3.2.1 and Section 3.2.3 for the data sizes of input data, the details of the areas, and the areas used by the head module.

	Data nam	e	Description		
	Dr. Dit input orog		Stores the ON/OFF information of Br.n Bit inputs entered from		
	Br Bit input area		the head module and slice modules.		
		Er Error information	Stores the statuses (error information) of the head module and		
		area	slice modules.		
Innut data	Information area	Mr Module status	Stores the information of the slice modules recognized by the		
input data		area	head module.		
		Cr Command result	Stores the results of executing a command to the head module or		
		area	corresponding slice module.		
	Mr Word input		Stores Wr.n Word input values received from the intelligent		
	vvr vvord input area		function modules in order of the mounted position.		

(2) Output data

The following table indicates the construction of output data. Refer to Section 3.2.2 and Section 3.2.3 for the data sizes of output data, the details of the areas, and the areas used by the head module.

	Data nan	ne	Description		
	Bw Bit output a	area	Stores the ON/OFF information of Bw.n Bit outputs provided to the head module and slice modules.		
		Ew Error clear	Stores the error information clear requests of the head		
		area	module and slice modules.		
Output data	Request area	Sw System area	System area used by the head module.		
		Cw Command	Stores the command for controlling the head module or		
		execution area	corresponding slice module.		
	Www Word outr	autoroo	Stores Ww.n Word output values sent to the intelligent		
		Julaiea	function modules in order of the mounted position.		

3.2.1 Input data specifications

This section explains the data sizes of input data and the details of each area.

POINT

In this manual, input data addresses (input image addresses on the master station side) are indicated as offset addresses (word unit). [Offset address] Denotes a data position in word units, relative to the first address of the input

image assigned for the MELSEC-ST system on the master station side.

(1) Input data sizes

The input data sizes differ depending on the setting of the maximum I/O points. The input data sizes for the maximum I/O points are indicated below. Refer to Section 6.1 for details of the maximum I/O points.

Offset address (Decimal)	P	Application	Data size	
+0 +1	Br.00 to Br.1F	Br Bit input area	2 words	••• Refer to (2) in this section.
+2 +3	Er.00 to Er.1F	Er Error information area	2 words	••• Refer to (3) in this section.
+4	Mr.0 to Mr.15	Mr Module status area	1 word	••• Refer to (4) in this section.
+5 to	Cr.0 to Cr.3	Cr Command result area	4 words	••• Refer to (5) in this section.
+8				▲
to	Wr.00 to Wr.33	Wr Word input area	Minimum size : 0 words Maximum size: 52 words	Size variable *1 · · · Refer to (6) ir
+60				this section.

(a) 32-point mode

*1: The data size of the Wr Word input area is a sum total of the Wr Word input area sizes used by the mounted intelligent function modules.

This data size is 0 when no intelligent function modules are mounted.

Offset address (Decimal)	A	Application	Data size	
+0				
to	Br.00 to Br.3F	Br Bit input area	4 words	\cdot \cdot Refer to (2) in this section.
+3				
+4				
to	Er.00 to Er.3F	Er Error information area	4 words	\cdot \cdot Refer to (3) in this section.
+7				
+8	Mr.0 to Mr.31	Mr Module status area	2 words	••• Refer to (4) in this section.
+9				
to	Cr.0 to Cr.3	Cr Command result area	4 words	$\cdot \cdot \cdot$ Refer to (5) in this section.
+13				
+14				Î ↑
to	Wr.00 to Wr.33	Wr Word input area	Minimum size : 0 words Maximum size: 52 words	Size variable $*1 \cdot \cdot \cdot \text{Refer to (6) in}$
+65]			this section.

(b) 64-point mode

*1: The data size of the Wr Word input area is a sum total of the Wr Word input area sizes used by the mounted intelligent function modules.

This data size is 0 when no intelligent function modules are mounted.

Offset address (Decimal)	A	Application	Data size	
+0				
to	Br.00 to Br.7F	Br Bit input area	8 words	\cdot · · Refer to (2) in this section.
+7				
+8				
to	Er.00 to Er.7F	Er Error information area	8 words	\cdot · · Refer to (3) in this section.
+15				
+16				
to	Mr.0 to Mr.63	Mr Module status area	4 words	\cdot · · Refer to (4) in this section.
+19				
+20				
to	Cr.0 to Cr.3	Cr Command result area	4 words	\cdot · · Refer to (5) in this section.
+23				
+24	·		Minimum size : 0 words	1
to	Wr.00 to Wr.33	Wr Word input area	Maximum size: 52 words	Size variable *1 · · · Refer to (6) in
+75				this section.

(c) 128-point mode

*1: The data size of the Wr Word input area is a sum total of the Wr Word input area sizes used by the mounted intelligent function modules.
 This data size is 0 when no intelligent function modules are mounted.

Offset address (Decimal)	Α	Application	Data size	
+0				
to	Br.00 to Br.FF	Br Bit input area	16 words	\cdot · · Refer to (2) in this section.
+15				
+16				
to	Er.00 to Er.FF	Er Error information area	16 words	\cdot · · Refer to (3) in this section.
+31				
+32				
to	Mr.0 to Mr.127	Mr Module status area	8 words	• • • Refer to (4) in this section.
+39				
+40				
to	Cr.0 to Cr.3	Cr Command result area	4 words	• • • Refer to (5) in this section.
+43				
+44	·		Minimum size : 0 words	l 🕇
to	Wr.00 to Wr.1F	Wr Word input area	Maximum size: 32 words	Size variable *1 · · · Refer to (6) in
+95				unis section.

*1: The data size of the Wr Word input area is a sum total of the Wr Word input area sizes used by the mounted intelligent function modules. This data size is 0 when no intelligent function modules are mounted.

(2) Br Bit input area

The Br Bit input area stores the ON/OFF information of the Br.n bit inputs entered from the head module and slice modules.

Each of the head module and slice modules occupies 2 bits per slice. The construction of the Br Bit input area is shown below.

Maxim	ium inpu	t/output	points]							
256-	128-	64-	32-						Br Bit	Slice No	
mode	mode	mode	mode	b15						input area –	b0
				Br.0F Br.0E	Br.0D Br.0C	Br.0B Br.0A	Br.09 Br.08	Br.07 Br.06	Br.05 Br.04	Br.03 Br.02	Br.01 Br.00
			Used	7	6	5	4	3	2	1	0
			area	Br.1F Br.1E	Br.1D Br.1C	Br.1B Br.1A	Br.19 Br.18	Br.17 Br.16	Br.15 Br.14	Br.13 Br.12	Br.11 Br.10
		Used		15	14	13	12	11	10	9	8
		area		Br.2F Br.2E	Br.2D Br.2C	Br.2B Br.2A	Br.29 Br.28	Br.27 Br.26	Br.25 Br.24	Br.23 Br.22	Br.21 Br.20
				23	22	21	20	19	18	17	16
				Br.3F Br.3E	Br.3D Br.3C	Br.3B Br.3A	Br.39 Br.38	Br.37 Br.36	Br.35 Br.34	Br.33 Br.32	Br.31 Br.30
	Used			31	30	29	28	27	26	25	24
	area			Br.4F Br.4E	Br.4D Br.4C	Br.4B Br.4A	Br.49 Br.48	Br.47 Br.46	Br.45 Br.44	Br.43 Br.42	Br.41 Br.40
				39	38	37	36	35	34	33	32
				Br.5F Br.5E	Br.5D Br.5C	Br.5B Br.5A	Br.59 Br.58	Br.57 Br.56	Br.55 Br.54	Br.53 Br.52	Br.51 Br.50
				47	46	45	44	43	42	41	40
				Br.6F Br.6E	Br.6D Br.6C	Br.6B Br.6A	Br.69 Br.68	Br.67 Br.66	Br.65 Br.64	Br.63 Br.62	Br.61 Br.60
				55	54	53	52	51	50	49	48
				Br.7F Br.7E	Br.7D Br.7C	Br.7B Br.7A	Br.79 Br.78	Br.77 Br.76	Br.75 Br.74	Br.73 Br.72	Br.71 Br.70
Used				63	62	61	60	59	58	57	56
area				Br.8F Br.8E	Br.8D Br.8C	Br.8B Br.8A	Br.89 Br.88	Br.87 Br.86	Br.85 Br.84	Br.83 Br.82	Br.81 Br.80
				71	70	69	68	67	66	65	64
				Br.9F Br.9E	Br.9D Br.9C	Br.9B Br.9A	Br.99 Br.98	Br.97 Br.96	Br.95 Br.94	Br.93 Br.92	Br.91 Br.90
				79	78	77	76	75	74	73	72
				Br.AF Br.AE	Br.AD Br.AC	Br.AB Br.AA	Br.A9 Br.A8	Br.A7 Br.A6	Br.A5 Br.A4	Br.A3 Br.A2	Br.A1 Br.A0
				87	86	85	84	83	82	81	80
				Br.BF Br.BE	Br.BD Br.BC	Br.BB Br.BA	Br.B9 Br.B8	Br.B7 Br.B6	Br.B5 Br.B4	Br.B3 Br.B2	Br.B1 Br.B0
				95	94	93	92	91	90	89	88
				Br.CF Br.CE	Br.CD Br.CC	Br.CB Br.CA	Br.C9 Br.C8	Br.C7 Br.C6	Br.C5 Br.C4	Br.C3 Br.C2	Br.C1 Br.C0
				103	102	101	100	99	98	97	96
				Br.DF Br.DE	Br.DD Br.DC	Br.DB Br.DA	Br.D9 Br.D8	Br.D7 Br.D6	Br.D5 Br.D4	Br.D3 Br.D2	Br.D1 Br.D0
				111	110	109	108	107	106	105	104
				Br.EF Br.EE	Br.ED Br.EC	Br.EB Br.EA	Br.E9 Br.E8	Br.E7 Br.E6	Br.E5 Br.E4	Br.E3 Br.E2	Br.E1 Br.E0
				119	118	117	116	115	114	113	112
				Br.FF Br.FE	Br.FD Br.FC	Br.FB Br.FA	Br.F9 Br.F8	Br.F7 Br.F6	Br.F5 Br.F4	Br.F3 Br.F2	Br.F1 Br.F0
				127	126	125	124	123	122	121	120

Г

(3) Er Error information area

The Er Error information area stores the statuses (error information) of the head module and slice modules.

Each of the head module and slice modules occupies 2 bits per slice. The construction of the $\boxed{\text{Er}}$ Error information area is shown below.

Maxim	ium inpu	it/output	points							Slico No	
256- point mode	128- point mode	64- point mode	32- point mode	b15				Er	Error inform	ation area –	b0
moue	mouo	mouo	mouo	Fr0E Fr0E	Fr0D Fr0C	Fr0B Fr0A	Er 09 Er 08	Er 07 Er 06	Er 05 Er 04	Fr.03 Fr.02	Er 01 Er 00
						E	4				
			Used		0	5	4	3	2		
				Er.1F Er.1E	Er.1D Er.1C	Er.1B Er.1A	Er.19 Er.18	Er.17 Er.16	Er.15 Er.14	Er.13 Er.12	Er.11 Er.10
		Used		15	14	13	12	11	10	9	8
		area		Er.2F Er.2E	Er.2D Er.2C	Er.2B Er.2A	Er.29 Er.28	Er.27 Er.26	Er.25 Er.24	Er.23 Er.22	Er.21 Er.20
				23	22	21	20	19	18	17	16
				Er.3F Er.3E	Er.3D Er.3C	Er.3B Er.3A	Er.39 Er.38	Er.37 Er.36	Er.35 Er.34	Er.33 Er.32	Er.31 Er.30
	Used			31	30	29	28	27	26	25	24
	area			Er.4F Er.4E	Er.4D Er.4C	Er.4B Er.4A	Er.49 Er.48	Er.47 Er.46	Er.45 Er.44	Er.43 Er.42	Er.41 Er.40
				39	38	37	36	35	34	33	32
				Er.5F Er.5E	Er.5D Er.5C	Er.5B Er.5A	Er.59 Er.58	Er.57 Er.56	Er.55 Er.54	Er.53 Er.52	Er.51 Er.50
				47	46	45	44	43	42	41	40
				Er.6F Er.6E	Er.6D Er.6C	Er.6B Er.6A	Er.69 Er.68	Er.67 Er.66	Er.65 Er.64	Er.63 Er.62	Er.61 Er.60
				55	54	53	52	51	50	49	48
				Er.7F Er.7E	Er.7D Er.7C	Er.7B Er.7A	Er.79 Er.78	Er.77 Er.76	Er.75 Er.74	Er.73 Er.72	Er.71 Er.70
Used				63	62	61	60	59	58	57	56
area				Er.8F Er.8E	Er.8D Er.8C	Er.8B Er.8A	Er.89 Er.88	Er.87 Er.86	Er.85 Er.84	Er.83 Er.82	Er.81 Er.80
				71	70	69	68	67	66	65	64
				Er.9F Er.9E	Er.9D Er.9C	Er.9B Er.9A	Er.99 Er.98	Er.97 Er.96	Er.95 Er.94	Er.93 Er.92	Er.91 Er.90
				79	78	77	76	75	74	73	72
				Er.AF Er.AE	Er.AD Er.AC	Er.AB Er.AA	Er.A9 Er.A8	Er.A7 Er.A6	Er.A5 Er.A4	Er.A3 Er.A2	Er.A1 Er.A0
				87	86	85	84	83	82	81	80
				Er.BF Er.BE	Er.BD Er.BC	Er.BB Er.BA	Er.B9 Er.B8	Er.B7 Er.B6	Er.B5 Er.B4	Er.B3 Er.B2	Er.B1 Er.B0
				95	94	93	92	91	90	89	88
				Er.CF Er.CE	Er.CD Er.CC	Er.CB Er.CA	Er.C9 Er.C8	Er.C7 Er.C6	Er.C5 Er.C4	Er.C3 Er.C2	Er.C1 Er.C0
				103	102	101	100	99	98	97	96
				Er.DF Er.DE	Er.DD Er.DC	Er.DB Er.DA	Er.D9 Er.D8	Er.D7 Er.D6	Er.D5 Er.D4	Er.D3 Er.D2	Er.D1 Er.D0
				111	110	109	108	107	106	105	104
				Er.EF Er.EE	Er.ED Er.EC	Er.EB Er.EA	Er.E9 Er.E8	Er.E7 Er.E6	Er.E5 Er.E4	Er.E3 Er.E2	Er.E1 Er.E0
				119	118	117	116	115	114	113	112
				Er.FF Er.FE	Er.FD Er.FC	Er.FB Er.FA	Er.F9 Er.F8	Er.F7 Er.F6	Er.F5 Er.F4	Er.F3 Er.F2	Er.F1 Er.F0
				127	126	125	124	123	122	121	120

(4) Mr Module Status area

The Mr Module Status area stores the information of the slice modules recognized by the head module.

Each of the head module and slice modules occupies 1 bit per slice. The construction of the Mr Module Status area is shown below.

Maxim	num inpu	it/output	points													Slico	No			
256-	128-	64-	32-]												باباتی بابا مانیا:	atus —			
mode	mode	mode	mode	b15													atus		b0	
			Used	Mr.15	Mr.14	Mr.13	Mr.12	Mr.11	Mr.10	Mr.9	Mr.8	Mr.7	Mr.6	Mr.5	Mr.4	Mr.3	Mr.2	Mr.1	Mr.0	
		Used	area	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0 <	┥
		area		Mr.31	Mr.30	Mr.29	Mr.28	Mr.27	Mr.26	Mr.25	Mr.24	Mr.23	Mr.22	Mr.21	Mr.20	Mr.19	Mr.18	Mr.17	Mr.16	J
	Used			31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	area			Mr.47	Mr.46	Mr.45	Mr.44	Mr.43	Mr.42	Mr.41	Mr.40	Mr.39	Mr.38	Mr.37	Mr.36	Mr.35	Mr.34	Mr.33	Mr.32	I
				47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	
				Mr.63	Mr.62	Mr.61	Mr.60	Mr.59	Mr.58	Mr.57	Mr.56	Mr.55	Mr.54	Mr.53	Mr.52	Mr.51	Mr.50	Mr.49	Mr.48	I
Used				63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	
area				Mr.79	Mr.78	Mr.77	Mr.76	Mr.75	Mr.74	Mr.73	Mr.72	Mr.71	Mr.70	Mr.69	Mr.68	Mr.67	Mr.66	Mr.65	Mr.64	I
				79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	
				Mr.95	Mr.94	Mr.93	Mr.92	Mr.91	Mr.90	Mr.89	Mr.88	Mr.87	Mr.86	Mr.85	Mr.84	Mr.83	Mr.82	Mr.81	Mr.80	I
				95	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80	
				Mr.111	Mr.110	Mr.109	Mr.108	Mr.107	Mr.106	Mr.105	Mr.104	Mr.103	Mr.102	Mr.101	Mr.100	Mr.99	Mr.98	Mr.97	Mr.96	I
				111	110	109	108	107	106	105	104	103	102	101	100	99	98	97	96	
				Mr.127	Mr.126	Mr.125	Mr.124	Mr.123	Mr.122	Mr.121	Mr.120	Mr.119	Mr.118	Mr.117	Mr.116	Mr.115	Mr.114	Mr.113	Mr.112	I
				127	126	125	124	123	122	121	120	119	118	117	116	115	114	113	112	

(5) Cr Command result area

The Cr Command result area stores the results of executing a command to the head module or each slice module.

The values stored in the Cr Command execution area all turn to 0 when the Bw.03 Command execution request is turned off.

Refer to Chapter 8 for details of the commands.

(a) Construction of Cr Command result area The construction of the Cr Command result area is shown below.

Maxim	ium inpu	it/output	points						
256-	128-	64-	32-						
mode	mode	mode	mode	b15 b8	b7 b0				
				Cr.0(15-8) Command execution result	Cr.0(7-0) Start slice No. of execution target				
Used	Used	Used	Used	Cr.1 Execute	ed command No.				
area	area	area	area	Cr.2 Response data 1					
				Cr.3 Response data 2					

(b) Data stored into Cr Command result area

Data stored into the Cr Command result area are described below.

Cr Command result area		Information	Description
Cr.0	Cr.0 (15-8)	Command execution result	Stores the command execution result.
	Cr.0 (7-0)	Start slice No. of execution target	Stores the start slice No. of the execution target head module or slice module.
Cr.1		Executed command No.	Stores the command No. of the executed command.
Cr.2		Response data 1	Stores the response data from the execution target
Cr.3		Response data 2	head module or slice module.

(6) Wr Word input area

The Wr Word input area stores Wr.n Word input values received from the intelligent function modules in order of the mounted position.

(a) Construction of Wr Word input area

The construction of the Wr Word input area is shown below.

Maximum input/output points		points			
256-	128-	64-	32-		
point	point	point	point	 b15	-0
mode	mode	mode	mode		<u> </u>
				Wr.00 Intelligent function module word input data 1	
				Wr.01 Intelligent function module word input data 2	
				•	
Used	Used	Used	Used	•	
area	area	area	area		
				Wr.1E Intelligent function module word input data 31	
				Wr.1F Intelligent function module word input data 32	
				•	
				•	
				Wr.32 Intelligent function module word input data 51	
				Wr.33 Intelligent function module word input data 52	

(b) Data size of Wr Word input area

Calculate the data size of the Wr Word input area as described below according to the mounting conditions of the intelligent function modules.

- 1) When no intelligent function modules are used
 - The data size of the \fbox{Wr} Word input area is 0.

2) When intelligent function modules are used Reserve the Wr Word input area for as many as the Wr.n Word input points used by the intelligent function modules. The Wr Word input area is assigned in order of mounting the intelligent function modules.

< Wr Word input area assignment example>

1) System example

	Mounted module				
Start slice No.	Module type	Number of Occupied Slices	Wr.n Word input points	Wr Word input area	
0	Head module	2			
2	Bus refreshing module	1			
3	Input module	1			
4	Output module	1			
5	Power feeding module	1			
6	Intelligent function module 1)	2	2 words	Wr.00 Wr.01	
8	Intelligent function module 2)	2	2 words	Wr.02 Wr.03	
10	Intelligent function module 3)	2	2 words	Wr.04 Wr.05	

2) Wr Word input area assignment example

In the system example in above 1), the Wr Word input area is assigned as shown below.

Wr.00 Intelligent function module 1) word input data 1
Wr.01 Intelligent function module 1) word input data 2
Wr.02 Intelligent function module 2) word input data 1
Wr.03 Intelligent function module 2) word input data 2
Wr.04 Intelligent function module 3) word input data 1
Wr.05 Intelligent function module 3) word input data 2

POINT

For the intelligent function module that can be operated by only the Ww.n Word output, the number of Wr.n Word input points can be changed to 0 by the slave parameter setting.

Refer to Section 6.1.4 for the setting in the case where the Wr.n Word input is not used for the intelligent function module.

3.2.2 Output data specifications

This section explains the data sizes of output data and the details of each area.

POINT

In this manual, output data addresses (output image addresses on the master station side) are indicated as offset addresses (word unit). [Offset address] Denotes a data position in word units, relative to the first address of the output image assigned for the MELSEC-ST system on the master station side.

(1) Output data sizes

The output data sizes differ depending on the setting of the maximum I/O points. The output data sizes for the maximum I/O points are indicated below. Refer to Section 6.1 for details of the maximum I/O points.

Offset address (Decimal)		Application	Data size	
+0	Bw.00 to Bw.1F	Bw Bit output area	2 words	\cdot · · Refer to (2) in this section.
+1		·		
+2	Ew 00 to Ew 1E	Ew Error clear area	2 words	\cdot · Pofor to (2) in this soction
+3				
+4	Sw.0	Sw System Area	1 words	 • Refer to (4) in this section.
+5				
to	Cw.0 to Cw.3	Cw Command execution area	4 words	$\cdot \cdot \cdot$ Refer to (5) in this section.
+8				
+9				▲
to	Ww.00 to Ww.33	Ww Word output area	Minimum size: 0 words Maximum size: 52 words	Size variable $*1 \cdot \cdot \cdot \text{Refer to (6) in}$
+60				this section.
•	·	•		

(a) 32-point mode

*1: The data size of the Ww Word output area is a sum total of the Ww Word output area sizes used by the mounted intelligent function modules.

This data size is 0 when no intelligent function modules are mounted.
Offset address (Decimal)		Application	Data size	
+0				
to	Bw.00 to Bw.3F	Bw Bit output area	4 words	\cdot · · Refer to (2) in this section.
+3				
+4				
to	Ew.00 to Ew.3F	Ew Error clear area	4 words	\cdot · · Refer to (3) in this section.
+7				
+8	Sw 0 to Sw 1	Sw System Area	2 words	••••Refer to (4) in this section.
+9			2 110100	
+10				
to	Cw.0 to Cw.3	Cw Command execution area	4 words	\cdot \cdot Refer to (5) in this section.
+13				
+14				
to	Ww.00 to Ww.33	Ww Word output area	Minimum size: 0 words Maximum size: 52 words	Size variable $*1 \cdot \cdot \cdot$ Refer to (6) in
+65				this section.

(b) 64-point mode

*1: The data size of the Ww Word output area is a sum total of the Ww Word output area sizes used by the mounted intelligent function modules.

This data size is 0 when no intelligent function modules are mounted.

Offset address (Decimal)		Application	Data size	
+0				
to	Bw.00 to Bw.7F	Bw Bit output area	8 words	\cdot · · Refer to (2) in this section.
+7				
+8				
to	Ew.00 to Ew.7F	Ew Error clear area	8 words	• • • Refer to (3) in this section.
+15				
+16				
to	Sw.0 to Sw.3	Sw System Area	4 words	\cdot \cdot Refer to (4) in this section.
+19				
+20				
to	Cw.0 to Cw.3	Cw Command execution area	4 words	\cdot \cdot Refer to (5) in this section.
+23				
+24			Minimum cizer O worde	
to	Ww.00 to Ww.33	Ww Word output area	Maximum size: 52 words	Size variable $*1 \cdot \cdot \cdot Refer$ to (6) in
+75				this section.

(c) 128-point mode

*1: The data size of the <u>Ww</u> Word output area is a sum total of the <u>Ww</u> Word output area sizes used by the mounted intelligent function modules.

This data size is 0 when no intelligent function modules are mounted.

Offset address (Decimal)		Application	Data size	
+0				
to	Bw.00 to Bw.FF	Bw Bit output area	16 words	$\cdot \cdot \cdot$ Refer to (2) in this section.
+15				
+16				
to	Ew.00 to Ew.FF	Ew Error clear area	16 words	\cdot \cdot Refer to (3) in this section.
+31				
+32				
to	Sw.0 to Sw.7	Sw System Area	8 words	\cdot · · Refer to (4) in this section.
+39				
+40				
to	Cw.0 to Cw.3	Cw Command execution area	4 words	\cdot · · Refer to (5) in this section.
+43				
+44				
to	Ww.00 to Ww.1F	Ww Word output area	Minimum size: 0 words Maximum size: 32 words	Size variable $*1 \cdot \cdot \cdot \text{Refer to (6) in}$
+95				

*1: The data size of the Ww Word output area is a sum total of the Ww Word output area sizes used by the mounted intelligent function modules. This data size is 0 when no intelligent function modules are mounted.

(2) Bw Bit output area

The Bw Bit output area stores the ON/OFF information of the Bw.n Bit outputs provided to the head module and slice modules.

Each of the head module and slice modules occupies 2 bits per slice. The construction of the Bw Bit output area is shown below.

Maximum input/output points										Slice No	
256- point	128- point mode	64- point	32- point	b15					Bw Bit o	output area –	b0
mode	mode	mode	moue	BW OF BW OF	BW 0D BW 0C	BW 0B BW 0A	Bw 09 Bw 08	Bw 07 Bw 06	Bw 05 Bw 04	Bw 03 Bw 02	Bw 01 Bw 00
							DW.00			DW.00 DW.02	DW.01 DW.00
			Used		0		4	3	2		
			area	BW.1F BW.1E	Bw.1D Bw.1C	Bw.1B Bw.1A	Bw.19 Bw.18	Bw.17 Bw.16	Bw.15 Bw.14	Bw.13 Bw.12	Bw.11 Bw.10
		Used		15	14	13	12	11	10	9	8
		area		Bw.2F Bw.2E	Bw.2D Bw.2C	Bw.2B Bw.2A	Bw.29 Bw.28	Bw.27 Bw.26	Bw.25 Bw.24	Bw.23 Bw.22	Bw.21 Bw.20
				23	22	21	20	19	18	17	16
				Bw.3F Bw.3E	Bw.3D Bw.3C	Bw.3B Bw.3A	Bw.39 Bw.38	Bw.37 Bw.36	Bw.35 Bw.34	Bw.33 Bw.32	Bw.31 Bw.30
	Used			31	30	29	28	27	26	25	24
	area			Bw.4F Bw.4E	Bw.4D Bw.4C	Bw.4B Bw.4A	Bw.49 Bw.48	Bw.47 Bw.46	Bw.45 Bw.44	Bw.43 Bw.42	Bw.41 Bw.40
				39	38	37	36	35	34	33	32
				Bw.5F Bw.5E	Bw.5D Bw.5C	Bw.5B Bw.5A	Bw.59 Bw.58	Bw.57 Bw.56	Bw.55 Bw.54	Bw.53 Bw.52	Bw.51 Bw.50
				47	46	45	44	43	42	41	40
				Bw.6F Bw.6E	Bw.6D Bw.6C	Bw.6B Bw.6A	Bw.69 Bw.68	Bw.67 Bw.66	Bw.65 Bw.64	Bw.63 Bw.62	Bw.61 Bw.60
				55	54	53	52	51	50	49	48
				Bw.7F Bw.7E	Bw.7D Bw.7C	Bw.7B Bw.7A	Bw.79 Bw.78	Bw.77 Bw.76	Bw.75 Bw.74	Bw.73 Bw.72	Bw.71 Bw.70
Used				63	62	61	60	59	58	57	56
area				Bw.8F Bw.8E	Bw.8D Bw.8C	Bw.8B Bw.8A	Bw.89 Bw.88	Bw.87 Bw.86	Bw.85 Bw.84	Bw.83 Bw.82	Bw.81 Bw.80
				71	70	69	68	67	66	65	64
				Bw.9F Bw.9E	Bw.9D Bw.9C	Bw.9B Bw.9A	Bw.99 Bw.98	Bw.97 Bw.96	Bw.95 Bw.94	Bw.93 Bw.92	Bw.91 Bw.90
				79	78	77	76	75	74	73	72
				Bw.AF Bw.AE	Bw.AD Bw.AC	Bw.AB Bw.AA	Bw.A9 Bw.A8	Bw.A7 Bw.A6	Bw.A5 Bw.A4	Bw.A3 Bw.A2	Bw.A1 Bw.A0
				87	86	85	84	83	82	81	80
				Bw.BF Bw.BE	Bw.BD Bw.BC	Bw.BB Bw.BA	Bw.B9 Bw.B8	Bw.B7 Bw.B6	Bw.B5 Bw.B4	Bw.B3 Bw.B2	Bw.B1 Bw.B0
				95	94	93	92	91	90	89	88
				Bw.CF Bw.CE	Bw.CD Bw.CC	Bw.CB Bw.CA	Bw.C9 Bw.C8	Bw.C7 Bw.C6	Bw.C5 Bw.C4	Bw.C3 Bw.C2	Bw.C1 Bw.C0
				103	102	101	100	99	98	97	96
				Bw.DF Bw.DE	Bw.DD Bw.DC	Bw.DB Bw.DA	Bw.D9 Bw.D8	Bw.D7 Bw.D6	Bw.D5 Bw.D4	Bw.D3 Bw.D2	Bw.D1 Bw.D0
				111	110	109	108	107	106	105	104
				Bw.EF Bw.EE	Bw.ED Bw.EC	Bw.EB Bw.EA	Bw.E9 Bw.E8	Bw.E7 Bw.E6	Bw.E5 Bw.E4	Bw.E3 Bw.E2	Bw.E1 Bw.E0
				119	118	117	116	115	114	113	112
				Bw.FF Bw.FE	Bw.FD Bw.FC	Bw.FB Bw.FA	Bw.F9 Bw.F8	Bw.F7 Bw.F6	Bw.F5 Bw.F4	Bw.F3 Bw.F2	Bw.F1 Bw.F0
				127	126	125	124	123	122	121	120

(3) Ew Error clear area

The Ew Error clear area stores the error information clear requests of the head module and slice modules.

This area is used to clear the corresponding error information (turn off the bit) of the head module or slice module after the error is remedied.

Each of the head module and slice modules occupies 2 bits per slice. The construction of the $\boxed{\text{Ew}}$ Error clear area is shown below.

Maxim	num inpu	it/output	points							Slice No	
256- point	128- point	64- point	32- point	b15					Ew Error	clear area –	b0
mode	mode	moue	mode			Ew 0B Ew 0A	Ew 09 Ew 08	Ew 07 Ew 06	Ew 05 Ew 04	Ew 03 Ew 02	Ew 01 Ew 00
			Used		6	5	4	3	2		
			urcu	Ew.1F Ew.1E	Ew.1D Ew.1C	Ew.1B Ew.1A	Ew.19 Ew.18	Ew.17 Ew.16	Ew.15 Ew.14	Ew.13 Ew.12	Ew.11 Ew.10
		Used		15	14	13	12	11	10	9	8
		area		Ew.2F Ew.2E	Ew.2D Ew.2C	Ew.2B Ew.2A	Ew.29 Ew.28	Ew.27 Ew.26	Ew.25 Ew.24	Ew.23 Ew.22	Ew.21 Ew.20
				23	22	21	20	19	18	17	16
				Ew.3F Ew.3E	Ew.3D Ew.3C	Ew.3B Ew.3A	Ew.39 Ew.38	Ew.37 Ew.36	Ew.35 Ew.34	Ew.33 Ew.32	Ew.31 Ew.30
	Used			31	30	29	28	27	26	25	24
	area			Ew.4F Ew.4E	Ew.4D Ew.4C	Ew.4B Ew.4A	Ew.49 Ew.48	Ew.47 Ew.46	Ew.45 Ew.44	Ew.43 Ew.42	Ew.41 Ew.40
				39	38	37	36	35	34	33	32
				Ew.5F Ew.5E	Ew.5D Ew.5C	Ew.5B Ew.5A	Ew.59 Ew.58	Ew.57 Ew.56	Ew.55 Ew.54	Ew.53 Ew.52	Ew.51 Ew.50
				47	46	45	44	43	42	41	40
				Ew.6F Ew.6E	Ew.6D Ew.6C	Ew.6B Ew.6A	Ew.69 Ew.68	Ew.67 Ew.66	Ew.65 Ew.64	Ew.63 Ew.62	Ew.61 Ew.60
				55	54	53	52	51	50	49	48
				Ew.7F Ew.7E	Ew.7D Ew.7C	Ew.7B Ew.7A	Ew.79 Ew.78	Ew.77 Ew.76	Ew.75 Ew.74	Ew.73 Ew.72	Ew.71 Ew.70
Used				63	62	61	60	59	58	57	56
area				Ew.8F Ew.8E	Ew.8D Ew.8C	Ew.8B Ew.8A	Ew.89 Ew.88	Ew.87 Ew.86	Ew.85 Ew.84	Ew.83 Ew.82	Ew.81 Ew.80
				71	70	69	68	67	66	65	64
				Ew.9F Ew.9E	Ew.9D Ew.9C	Ew.9B Ew.9A	Ew.99 Ew.98	Ew.97 Ew.96	Ew.95 Ew.94	Ew.93 Ew.92	Ew.91 Ew.90
				79	78	77	76	75	74	73	72
				Ew.AF Ew.AE	Ew.AD Ew.AC	Ew.AB Ew.AA	Ew.A9 Ew.A8	Ew.A7 Ew.A6	Ew.A5 Ew.A4	Ew.A3 Ew.A2	Ew.A1 Ew.A0
				87	86	85	84	83	82	81	80
				Ew.BF Ew.BE	Ew.BD Ew.BC	Ew.BB Ew.BA	Ew.B9 Ew.B8	Ew.B7 Ew.B6	Ew.B5 Ew.B4	Ew.B3 Ew.B2	Ew.B1 Ew.B0
				95	94	93	92	91	90	89	88
				Ew.CF Ew.CE	Ew.CD Ew.CC	Ew.CB Ew.CA	Ew.C9 Ew.C8	Ew.C7 Ew.C6	Ew.C5 Ew.C4	Ew.C3 Ew.C2	Ew.C1 Ew.C0
				103	102	101	100	99	98	97	96
				Ew.DF Ew.DE	Ew.DD Ew.DC	Ew.DB Ew.DA	Ew.D9 Ew.D8	Ew.D7 Ew.D6	Ew.D5 Ew.D4	Ew.D3 Ew.D2	Ew.D1 Ew.D0
				111	110	109	108	107	106	105	104
				Ew.EF Ew.EE	Ew.ED Ew.EC	Ew.EB Ew.EA	Ew.E9 Ew.E8	Ew.E7 Ew.E6	Ew.E5 Ew.E4	Ew.E3 Ew.E2	Ew.E1 Ew.E0
				119	118	117	116	115	114	113	112
				Ew.FF Ew.FE	Ew.FD Ew.FC	Ew.FB Ew.FA	Ew.F9 Ew.F8	Ew.F7 Ew.F6	Ew.F5 Ew.F4	Ew.F3 Ew.F2	Ew.F1 Ew.F0
				127	126	125	124	123	122	121	120

(4) Sw System area

The Sw System area is used by the head module system. Store 0 (fixed) into the Sw System area. The construction of the Sw System area is shown below.

Maxim	num inpu	ıt/output	points		
256- point mode	128- point mode	64- point mode	32- point mode	b15 bC	0
		Used	Used area	Sw.0 System Area 1	
	Used	area		Sw.1 System Area 2	
Used area	area			Sw.2 System Area 3	
				Sw.3 System Area 4	
				Sw.4 System Area 5	
				Sw.5 System Area 6	
				Sw.6 System Area 7	
				Sw.7 System Area 8	

(5) Cw Command execution area

The Cw Command execution area stores the information of the command to be executed for the head module or each slice module. Refer to Chapter 8 for details of the commands.

(a) Construction of Cw Command execution area

The construction of the Cw Command execution area is shown below.

Maxim	num inpu	ut/output	points		
256- point mode	128- point mode	64- point mode	32- point mode	b15	b0
				Cw.0 Start slice No. of execution target	
Used	Used	Used	Used	Cw.1 Command No. to be executed	
area	area	area	area	Cw.2 Argument 1	
				Cw.3 Argument 2	

(b) Data stored into Cw Command execution area

Data stored into the Cw Command execution area are described below.

Cw Command execution area	Information	Description	
Cw.0	Start slice No. of execution target	Stores the start slice No. of the execution target head module or slice module.	
Cw.1	Command No. to be executed	Stores the command No. of the command to be executed.	
Cw.2	Argument 1		
Cw.3	Argument 2	Stores the argument used in the command.	

(6) Ww Word output area

Stores the Ww.n Word output values of the intelligent function modules in order of the mounted position.

(a) Construction of Ww Word output area

The construction of the Ww Word output area is shown below.

Maxim	ium inpu	ut/output	. points		
256- point mode	128- point mode	64- point mode	32- point mode	b15	b0
				Ww.00 Intelligent function module word input data 1	
				Ww.01 Intelligent function module word input data 2	
				•	
Used	Used	Used	Used	•	
area	area	area	area	•	
				Ww.1E Intelligent function module word input data 31	
				Ww.1F Intelligent function module word input data 32	
				•	
				•	
				•	
				Ww.32 Intelligent function module word input data 51	
				Ww.33 Intelligent function module word input data 52	

(b) Data size of Ww Word output area

Calculate the data size of the Ww Word output area as described below according to the mounting conditions of the intelligent function modules.

- 1) When no intelligent function modules are used
 - The data size of the Ww Word output area is 0.

2) When intelligent function modules are used Reserve the Ww Word output area for as many as the Ww.n Word output points used by the intelligent function modules. The Ww Word output area is assigned in order of mounting the intelligent function modules.

< Ww Word output area assignment example>

1)	System example	

	Mounted module						
Start slice No.	Module type	Number of Occupied Slices	Ww.n Word output points	Ww Word output area			
0	Head module	2					
2	Bus refreshing module	1					
3	Input module	1					
4	Output module	1					
5	Power feeding module	1					
6	Intelligent function module 1)	2	2 words	Ww.00 Ww.01			
8	Intelligent function module 2)	2	2 words	Ww.02 Ww.03			
10	Intelligent function module 3)	2	2 words	Ww.04 Ww.05			

2) Ww Word output area assignment example

In the system example in above 1), the Ww Word output area is assigned as shown below.

Ww.00 Intelligent function module 1) word output data 1
Ww.01 Intelligent function module 1) word output data 2
Ww.02 Intelligent function module 2) word output data 1
Ww.03 Intelligent function module 2) word output data 2
Ww.04 Intelligent function module 3) word output data 1
Ww.05 Intelligent function module 3) word output data 2

POINT

For the intelligent function module that can be operated by only the Wr.n Word input, the number of Ww.n Word output points can be changed to 0 by the slave parameter setting.

Refer to Section 6.1.4 for the setting in the case where the Ww.n Word output is not used for the intelligent function module.

3.2.3 I/O data used by head module

This section explains the areas used for I/O data by the head module and their applications and information.

REMARK

For the applications of the areas assigned to each slice module, refer to the manual of each slice module.

- (1) Input data
 - (a) Br Bit input area
 - The following table describes the applications of the Br Bit input area used by the head module.

The head module uses the first 4 bits (Br.00 to Br.03) of the Br Bit input area.

Br.n Bit input	Application	Br.n Bit input status
Br.00	Module READY Stores the information on whether the head module can communicate with the master station.	0: MELSEC-ST system being prepared or error occurred 1: MELSEC-ST system ready
Br.01	Forced output test mode Stores the information on whether the head module is in the forced output test mode.	0: Waiting for forced output test mode to be executed1: Forced output test mode being executed
Br.02	Online module change (OMC) Stores the information on whether the MELSEC-ST system is ready for online module change.	0: Waiting for online module change to be executed1: Online module change being executed
Br.03	Command execution Stores the information on the execution status of the command requested in the Cw Command execution area.	0: Command being executed or waiting for command request1: Command execution

0: OFF, 1: ON

(b) Er Error information area

The following table indicates the information of the Er Error information area used by the head module and the error codes corresponding to the error information.

The head module uses the first 4 bits (Er.00 to Er.03) of the Er Error information area.

Read the error code from the head module by any of the following methods. (Refer to Section 9.2.1)

- Extended diagnostic information notification function
- Command
- GX Configurator-ST

The stored error information can be cleared by turning ON the Ew.00 Error Clear Request.

	Er.n Error	information			
Er.03	Er.02	Er.01	Er.00	Information	Error code *1
0	0	0	0	Normal	_
0	0	0	1	FDL address change error	F201н
1	0	1	1	User parameter setting error	F203н
1	1	0	0	Module error	F200н
1	1	0	1	Parameter read error (Online module change)	С101н to С13Fн
1	1	1	0	Replaced module error (Online module change)	С201н to C23Fн

0: OFF, 1: ON

*1: Refer to Section 9.2.2 for the error codes.

(c) Mr Module status area

The following table indicates the information of the Mr Module status area used by the head module.

The head module uses the first 2 bits (Mr.0 to Mr.1) of the Mr Module status area.

Mr.n Moo	dule status	Information	Description		
Mr.1	Mr.0	Information	Description		
0	0	Hardware fault	A hardware fault occurred in the head module.		
1	1	Normal	The head module is operating normally.		

0: OFF, 1: ON

(2) Outp<u>ut data</u>

(a) |Bw |Bit output area

The following table describes the applications of the Bw Bit output area used by the head module.

The head module uses the first 4 bits (Bw.00 to Bw.03) of the Bw Bit output area.

Bw.n Bit output	Application	Bw.n Bit output status
Bw.00 Bw.01 Bw.02	System area Use prohibited	0 (Fixed)
Bw.03	Command request The command sent from the master station is requested to be executed.	0: Command not requested 1: Command requested

0: OFF, 1: ON

(b) Ew Error clear area

1) Ew Error clear area of each slice module

The error clear request bit of each slice module is the first bit of the assigned \boxed{Ew} Error clear area.

<Example>

When the number of occupied slices is "4" and the start slice No. is "66", the error clear request bit is <u>Ew.84</u>

Ew.8B	Ew.8A	Ew.89	Ew.88	Ew.87	Ew.86	Ew.8	85	Ew.84	Ew.n Error clear
System Area (Use prohibited)						Error clear request	Application		
6	69	6	8	ť	67		Ċ	6	Slice No.

2) Ew Error clear area of head module

The following table indicates the information of the Ew Error clear area used by the head module.

The head module uses the first 4 bits (Ew.00) to Ew.03) of the Ew Error clear area.

Ew.n Error clear	Application	Ew.n Error clear status
Ew.00	Error clear request Stores the error information clear request of the head module.	0: Error clear not requested 1: Error clear requested
Ew.01 Ew.02 Ew.03	System area Use prohibited	0 (Fixed)

0: OFF, 1: ON

3) Precautions for using the Ew.n error clear If an error cause has not yet been eliminated when the error clear request bit is turned off, the error information is set to the Er Error

> information area again. (While the <u>Ew.n</u>) Error clear is on, the corresponding bits of the <u>Er</u> Error information area all turn off.)

3.3 Head Module Processing Time

This section explains the processing time of the head module in the MELSEC-ST system.

Communication processings between the master station and MELSEC-ST system are outlined below.

(1) Input data processing outline

How input data from an external device is sent to the master station is shown below.

3.3.1 ST bus cycle time

ST bus cycle time is the time required for the head module to refresh input or output data for the slice modules.

This section explains the ST bus cycle time expression and processing time example.

(1) ST bus cycle time expression

The expression for calculating the ST bus cycle time is given below.

ST bus cycle time $[\mu s] = \{24 \times (1) + 2)\}^{*1}$

+ (157 \times number of mounted intelligent function modules) + (internal processing time ^{*2})

- *1: Calculate 1) and 2) by the following expressions.
 - When there are slice modules whose occupied I/O points are equal to or less than 4 points
 - 1) = number of mounted slice modules
 - When there are slice modules whose occupied I/O points are greater than 4 points
 - 2) = (number of occupied I/O points / 4) \times number of mounted slice modules
 - <Example>

When there are three slice modules having 2 occupied I/O points, two slice modules having 4 points, and three slice modules having 16 points $1) + 2) = 5 + (16 / 4) \times 3 = 17$

- *2: The internal processing time changes depending on the maximum input/output points.
 - 32-point mode: 385µs
 - 64-point mode: 400µs
 - 128-point mode: 430 µs
 - 256-point mode: 490 µs

(2) Processing time example

The following system configuration example is used to explain a processing time example of ST bus cycle time.

(The following table uses the maximum input/output points sheet provided in Appendix 2.1.)

No.	Module name	Number of Occupied I/O Points	Start Slice No. (Number of occupied slices)	Wr.n	Ww.n	5V DC Internal Current Consumption (Total)	24V DC Current (Total)	Slot Width (Total)
0	ST1H-PB	4	0(2)	_		0.530A(0.530A)	0A(0A)	
1	ST1PSD	2	2(1)	_	-	—	_	25.2mm(25.2mm)
2	ST1X2-DE1	2	3(1)	_	-	0.085A(0.615A)	*1	12.6mm(37.8mm)
3	ST1Y2-TE2	2	4(1)	_	-	0.090A(0705A)	*1	12.6mm(50.4mm)
4	ST1PDD	2	5(1)	_		0.060A(0.765A)	_	12.6mm(63.0mm)
5	ST1AD2-V	4	6(2)	2	2	0.110A(0.875A)	*1	12.6mm(75.6mm)
6	ST1DA2-V	4	8(2)	2	2	0.095A(0.970A)	*1	12.6mm(88.2mm)
Tota	I	20	—	4	4	_	_	_

*1: The 24V DC current changes depending on the external device connected to each slice module.

Confirm the current consumption of the external device connected to each slice module, and calculate the total value. Refer to the MELSEC-ST System User's Manual for details of current consumption calculation.

> Number of mounted intelligent function modules: 2 Maximum input/output points: 32-point mode

ST bus cycle time = $\{24 \times (6 + 0)\} + (157 \times 2) + 385 = 843 \ [\mu s]$

3.3.2 Input transmission delay time

This section explains the time required from when the slice module receives input data from the external device until it outputs that data onto the PROFIBUS-DP line.

(1) Average delay time

Average input transmission delay time is indicated below.

Input transmission delay time = 1) + (1.5 imes ST bus cycle time)

+ (0.5 imes bus cycle time)

1): For input module Input module response time

For intelligent function module • • Intelligent function module processing time For details, refer to the MELSEC-ST System User's Manual or intelligent function module manual.

ST bus cycle time: Refer to Section 3.3.1.

Bus cycle time: Refer to the manual of the master station.

(2) Maximum delay time

Maximum input transmission delay time is indicated below.

Input transmission delay time = 1) + (2.0 \times ST bus cycle time)

+ (1.0 \times bus cycle time)

 For input module • • Input module response time For intelligent function module • Intelligent function module processing time For details, refer to the MELSEC-ST System User's Manual or intelligent function module manual.

ST bus cycle time: Refer to Section 3.3.1.

Bus cycle time: Refer to the manual of the master station.

3.3.3 Output transmission delay time

This section explains the time required from when the head module receives output data from the master station until the slice module outputs data to the external device.

(1) Average delay time

Average output transmission delay time is indicated below.

Output transmission delay time = $(1.0 \times \text{ST bus cycle time}) + 1)$

ST bus cycle time: Refer to Section 3.3.1.

 For output module • • • Output module response time For intelligent function module • • Intelligent function module processing time For details, refer to the MELSEC-ST System User's Manual or intelligent function module manual.

(2) Maximum delay time

Maximum output transmission delay time is indicated below.

Output transmission delay time = $(1.5 \times \text{ST bus cycle time}) + 1)$

ST bus cycle time: Refer to Section 3.3.1.

For output module • • • Output module response time
 For intelligent function module • • Intelligent function module processing time
 For details, refer to the MELSEC-ST System User's Manual or intelligent
 function module manual.

4 FUNCTIONS

This chapter explains the head module functions.

4.1 Function List

The head module functions are listed below.

(1) Network functions

The following table describes the head module functions used in the PROFIBUS-DP network.

To use the following functions, set the user parameters on the configuration software of the master station.

Function name	Description	Reference section
I/O data communication function	Communicates I/O data with the master station.	Section 4.2.1
Global control function	Controls the inputs/outputs of slave stations in the specified group simultaneously by multicasting (broadcasting) from the master station.	Section 4.2.2
Extended diagnostic information notification function	Notifies the master station of head module and slice module errors as extended diagnostic information.	Section 4.2.3
Swap function	Swaps the high and low bytes in word units when input or output data are sent to or received from the master station or when extended diagnostic information is sent to the master station. When the master station handles the high and low bytes of word data in reverse to the head module, using this function allows data communication without creating a high/low byte swapping program.	Section 4.2.4
I/O data consistency function	Prevents data inconsistency between the communication data of PROFIBUS- DP and the I/O data of the head module.	Section 4.2.5

(2) Control functions

The following table describes the functions used by the head module to control the slice modules.

Function name	Description			on method		Reference
T diretion name	Description	1)	2)	3)	4)	section
Setting of output	Sets whether the refresh of data output to the other normally					
status at module	operating output modules and intelligent function modules will be	0	\times	\times	\times	Section 4.3.1
error	stopped or continued when an error occurs in a slice module.					
Information	Monitors various information of the head module and slice	\sim	\sim	\sim		* 1
monitor	modules.	^	^	^	0	小 Ⅰ
Status monitor	Monitors the operating statuses of the slice modules and the error history, etc. of the head module.	×	×	0	0	Section 4.3.2
Online module	The I/O modules and intelligent function modules can be	X	0	X		Castian 1.1
change	replaced without stopping the MELSEC-ST system.	×	0	×	0	Section 4.4
Forced output test	Forcibly outputs the Bw.n Bit Output, Ew.n Error Clear and				(.1.4
function	Ww.n Word Output of the head module and each slice module.	×	×	×	0	*1
Intelligent function	Deads an initial and the form of the DOM of the					
module parameter	Reads or writes parameters from or to the ROW or RAW of the	∆*2	\times	0	0	Section 4.3.3
read/write						
Head module reset	Resets the MELSEC-ST system.	\times	0	\times	0	Section 5.3.2
Head module	Reads the MELSEC-ST system parameters sent from the master	×	×	×		N- 1
parameter read	station to the head module.	^	~	~	0	小
PROFIBUS-DP	Deade the DDOFIDUS DD network perometers east from the					
network parameter	Reads the PROFIBOS-DP network parameters sent from the	\times	\times	\times	0	*1
read						
PROFIBUS-DP	Reads the input data sent from the head module to the master					
communication	station and the output data sent from the master station to the	\times	\times	\times	0	*1
data read	head module.					
Self-diagnostics	Runs a hardware test on the single head module.	\times	0	\times	×	Section 5.4
Command execution	Executes a command requested by the master station.	×	×	0	×	Chapter 8

 \bigcirc : Can be executed, \times : Cannot be executed

1) Use the configuration software of the master station to set the user parameter.

2) Use the button or switch of the head module to perform operation.

3) Execute a command from the master station.

4) Use GX Configurator-ST to perform operation.

*1: For the operation of GX Configurator-ST, refer to the GX Configurator-ST Operating Manual.

*2: Setting from the configuration software of the master station allows the user parameters to be written to only the RAM of the intelligent function module.

4.2 Network Functions

This section explains the head module functions used in the PROFIBUS-DP network.

4.2.1 I/O data communication function

(1) I/O data communication function

I/O data can be communicated with the Class 1 master station (master station that makes cyclic data communication with slave stations) of PROFIBUS-DP. The head module can exchange up to 304-byte data in total with the master station: up to 152-byte input data (head module \rightarrow master station) and up to 152-byte output data (master station \rightarrow head module).

(2) I/O data size

The size of I/O data communicated with the master station changes depending on the maximum input/output points.

Refer to Chapter 6 for the maximum input/output points.

Refer to Section 3.2.1 and Section 3.2.2 for the I/O data size for the maximum input/output points.

(3) I/O status when the CPU stop error has occurred in master station If an error (PLC CPU stop error) has occurred in a master station, the I/O status of the master station varies with the master station used.

The following table shows the I/O status when an error has occurred in a master station for each model.

Maser station	Master station	Communication status		
model	Input data	Output data	Communication status	
QJ71PB92D	The input data sent from slave stations are refreshed.	The output data sent to slave stations when the CPU stops are held.	Continued	
AJ71PB92D, A1SJ71PB92D	The input data sent from slave stations when the CPU stops are held.	Cleared	Stopped	
Master stations other than above	Refer to the manual for the master station			

4.2.2 Global control function

(1) Global control function

The inputs/outputs of slave stations are controlled simultaneously for each specified group by multicasting (broadcasting) from the master station. The head module that executes the global control function belongs to one or more groups specified by the master station.

Set the group number of the head module using the configuration software of the master station.

(2) Global control services available for head module The following table describes the global control services available for the global

control function of the head module.

Service name	Description				
	Starts the SYNC (output synchronization) mode.				
EVNC	During the SYNC mode, the output status is refreshed every time the SYNC				
STINC	service is received.				
	The output status is held as long as the SYNC service is not received.				
UNSYNC	Ends the SYNC (output synchronization) mode.				
	Starts the FREEZE (input synchronization) mode.				
	During the FREEZE mode, the input status is refreshed every time the				
FREEZE	FREEZE service is received.				
	The input status is held as long as the FREEZE service is not received.				
UNFREEZE	Ends the FREEZE (input synchronization) mode.				

(3) Outline of service operations

The following shows the outline of the SYNC and UNSYNC services and FREEZE and UNFREEZE services.

(a) When receiving SYNC and UNSYNC services

2) After receiving SYNC service

- When receiving the SYNC service, the head module enters the SYNC mode, and stops refresh from its output receiving area to the output status area of the slice module.
- During the SYNC mode, the SYN. LED of the head module is on.
- When the SYNC service is received during the SYNC mode, refresh to the output status area is performed only once.
- Even during the SYNC mode, refresh from the input status area to the input sending area is executed continuously.
- When receiving the UNSYNC service, the head module ends the SYNC mode and resumes refresh from its output receiving area to the output status area of the slice module.
- When the UNSYNC service is received and the SYNC mode is ended, the SYN. LED of the head module turns off.

3) After receiving UNSYNC service

(b) When receiving FREEZE and UNFREEZE services

2) After receiving FREEZE service

- When receiving the FREEZE service, the head module enters the FREEZE mode, and stops refresh from the input status area of the slice module to the input sending area of the head module.
- During the FREEZE mode, the FRE. LED of the head module is on.
- When the FREEZE service is received during the FREEZE mode, refresh to the input sending area is performed only once.
- Even during the FREEZE mode, refresh from the output receiving data to the output status area is executed continuously.
- When receiving the UNFREEZE service, the head module ends the FREEZE mode, and resumes refresh from the input status area of the slice module to the input sending area area of the head module.
- When the UNFREEZE service is received and the FREEZE mode is ended, the FRE. LED of the head module turns off.

3) After receiving UNFREEZE service Class 1 master UNFREEZE service

(4) Group selection

There are a total of 8 groups from 1 to 8.

The head module is allowed to belong to any of the 8 groups. (Specify the group using the configuration software of the master station.)

Slice

4.2.3 Extended diagnostic information notification function

(1) Extended diagnostic information notification function When errors occur in the head module and/or slice modules, this function can notify the master station of the errors of up to 2 modules in chronological order. When the head module has notified the master station of extended diagnostic information, the DIA LED of the head module is on. When the head module and/or slice modules return to normal, the master station

(2) Setting of extended diagnostic information notification function The extended diagnostic information notification function defaults to "Enable (Notified)".

When the master station is not notified of extended diagnostic information, the extended diagnostic information notification function setting must be changed on the configuration software of the master station.

Use the "Ext_Diag information" user parameter to set this function. The setting items of Ext Diag information are as follows.

Item	Description	
Enable	Notifies the master station of head module and/or slice module	
(Default)	errors as extended diagnostic information.	
Disable	If errors occur in the head module and/or slice modules, does not	
Disable	notify the master station of extended diagnostic information.	

(3) Extended diagnostic information data

- (a) Data sent to master station
 - When the extended diagnostic information notification function is set to "Enable (notified)", the head module sends the following data to the extended diagnostic information area of the master station. Refer to the manual of the master station for the extended diagnostic information area of the master station.

Offset address (Unit: Word)	Name		
+ 0	Head module error co	ode	
+ 1			Error slice No.
+ 2	Error slice module	First module	Detail error code 1
+ 3			Detail error code 2
+ 4	information *1		Error slice No.
+ 5		Second module	Detail error code 1
+ 6			Detail error code 2

*1: The error slice module information of two modules is stored in chronological order.

REMARK

Depending on the master station, the high and low bytes of the extended diagnostic information data sent from the head module may be reverse to those of the extended diagnostic information area of the master station.

In that case, use the swap function of the head module.

Refer to Section 4.2.4 for details.

- (b) Details of sending data area
 - 1) Head module error code area

Stores an error code corresponding to the error that occurred in the head module.

Refer to Section 9.2.2 for the error codes of the head module.

2) Error slice module information area

Stores the information of up to 2 error slice modules in chronological order.

The details of the error slice module information area are described below.

Name	Description	
Error slice No.	Stores the start slice No. of the slice module where an error occurred. (Stores 0000н when no error has occurred.)	
Detail error code 1	Stores the error code $*^{1*2}$ of the slice module where	
Detail error code 2	an error occurred. (Stores 0000н when no error has occurred.)	

 *1: The error code stored into this area is the same as the value stored into the <u>Cr</u> Command result area when the command (0101H) is executed.
 For error codes of the intelligent function module, refer to the manual of the intelligent function module.

When an error occurred in the power distribution module or I/O module, an error code of the head module is stored.

*2: If a hardware or similar fault occurs in the slice module, FFFFH is stored into Detail error code 1.

In that case, please consult your local Mitsubishi representative, explaining a detailed description of the problem.

REMARK

When the master station is not notified of the extended diagnostic information, confirm the error information in the [Er] Error information area of each module, and execute the command (0101H) to read the error code.

4.2.4 Swap function

(1) Swap function

The high and low bytes are swapped in word units when input or output data are sent to or received from the master station or when extended diagnostic information is sent to the master station.

When the relevant user parameter of the head module is set to "Enable (swapped)", the following processing is executed.

 I/O dataThe data stored in the input sending area are sent to the master station after their high and low bytes have been swapped.

The data received from the master station are stored into the output receiving area after their high and low bytes have been swapped.

• Extended diagnostic information The extended diagnostic information data

are sent to the master station after their high and low bytes have been swapped.

Use this function when the used master station handles the high and low bytes of word data in reverse to those of the head module.

Data can be swapped for communication without the need for creating a program for swapping the high and low bytes.

PROFIBUS-DP data communication

H: High byte, L: Low byte

(2) Setting and operation outline for I/O data swapping

The following describes the setting for I/O data swapping, the swap function setting by the master station type, and operation outline.

(a) Setting at master station

To swap I/O data, swap setting must be made on the configuration software of the master station.

Make the swap setting of I/O data using the "Swap of input/output data" user parameter.

The setting items of Swap of input/output data are as follows.

Item	Description
Enable	The high and low bytes are swapped in word unit when I/O
	data are sent or received.
Disable (Default)	Swap is not executed when I/O data are sent or received.

(b) Swap function setting by master station type

The swap function setting changes depending on the master station type as described below.

Master station type		Swap function setting of head module	
AJ71PB92D, A1SJ71PB92D		Disable (Not swapped)	
	When swap is not executed on master station side (Default setting)	Disable (Not swapped)	
QJ71PB92D	When swap is not executed on master station side	Enable (Swapped)	
Other master station		Set according to the specifications of the master station	

(c) Operation outline

When the AJ71PB92D, A1SJ71PB92D or QJ71PB92D is used as the master station, the operation outline is as shown below.

1) When the master station is the AJ71PB92D, A1SJ71PB92D or QJ71PB92D (not swapped)

PROFIBUS-DP data communication

H: High byte, L: Low byte

2) When the master station is the QJ71PB92D (swapped)

PROFIBUS-DP data communication

H: High byte, L: Low byte

(3) Setting and operation outline for extended diagnostic information swapping

The following describes the setting for extended diagnostic information swapping and the data construction of the extended diagnostic information.

(a) Setting at master station

To swap extended diagnostic information, swap setting must be made on the configuration software of the master station.

Make the swap setting of extended diagnostic information using the "Swap of Ext_Diag information" user parameter.

The setting items of Swap of Ext_Diag information are as follows.

Item	Description	
Enable	The high and low bytes are swapped in word units when extended diagnostic information is sent.	
Disable (Default)	Swap is not executed when extended diagnostic information is sent	
Doladity	0 0011	

(b) Swap function setting by master station type

The swap function setting changes depending on the master station type as described below.

Master station type	Swap function setting of head module
AJ71PB92D, A1SJ71PB92D, QJ71PB92D	Disable (Not swapped)
Other master station	Set according to the specifications of the master station

(c) Data construction of extended diagnostic information

The data construction of extended diagnostic information is shown below.

<when "disable="" (not="" is="" selected="" swapped)"=""></when>		
Offset address (Unit: Word)	Extended diagnostic information	
+0	Head modul	e error code
+0	Н	L
1	First module e	error slice No.
+1	Н	L
10	First module detail error code 1	
+2	Н	L
+3	First module detail error code 2	
-5	Н	L
+1	Second module error slice No.	
+4	Н	L
+5	Second module detail error code 1	
15	Н	L
+6	Second module detail error code 2	
+0	Н	L

<When "Enable (swapped)" is selected>

Offset address (Unit: Word)	Extended diagnostic information	
10	Head modul	e error code
+0	L	Н
+1	First module e	error slice No.
+1	L	Н
10	First module de	tail error code 1
+2	L	Н
10	First module detail error code 2	
+3	L	Н
1+	Second module error slice No.	
τ4	L	Н
+5	Second module detail error code 1	
+5	L	Н
+6	Second module detail error code 2	
+0	L	Н

H: High byte, L: Low byte

4.2.5 I/O data consistency function

(1) I/O data consistency function

This function prevents data inconsistency between the communication data of PROFIBUS-DP and the I/O data of the head module.

When using either or both of the following items in the MELSEC-ST system, make the data consistency function setting.

- When intelligent function modules are used in the MELSEC-ST system
- · When the master station requests the MELSEC-ST system to send a command

(2) Input data consistency

The input data to be sent from the head module to the master station are processed in the head module to prevent inconsistency. No setting is required for input data consistency.

(3) Output data consistency

For the output data sent from the master station to the head module, the consistency function setting must be made using the configuration software of the master station.

(a) Setting at master station

Use the "Consistency function" user parameter to set the consistency function.

The setting items of Consistency function are as follows.

Refer to (3) (b) in this section for the selection of the consistency function.

Item	Description	
Enable (Default)	Consistency processing of the head module and intelligent function module control operations is executed in the head module and intelligent function modules.	
Disable	Consistency processing of the head module and intelligent function module control operations is not executed. *1	

*1: When the consistency function is set to "Disable", the time required for the command request to the head module and the control operation of the intelligent function module is shortened by one bus cycle time.

(b) Consistency function

Select Modules of the head module and the output data consistency function of the master station must be considered to set the consistency function.

Select Modules of head module Master station specifications	ST1H-PB **ptswhole consistent	ST1H-PB **ptsword consistent
When master station can prevent inconsistency of whole output data *1	Disable	Fachla
When master station cannot prevent inconsistency of whole output data *1	Enable	Enable

A consistency function selection table is given below.

*1: The size of output data changes depending on the maximum input/output points of the head module.

Refer to Section 3.2.2 for the output data size.

(4) Difference between operations depending on setting

The following shows a difference between head module and intelligent function module operations depending on the setting.

(a) Example of command execution

- When a command request is received by the head module After receiving 1), the head module accepts 2) in the next ST bus cycle and executes the command.
- When a command result is sent from the head module The head module sends 3) and 4) in the same ST bus cycle.

- When a command request is received by the head module The head module accepts 1) and 2) in the same ST bus cycle and executes the command.
- When a command result is sent from the head module The head module sends 3) and 4) in the same ST bus cycle.

(b) Example of communication with intelligent function module (digital-analog conversion module)

- When receiving the CH
 output enable/disable flag, the intelligent function module receives 1) and then receives 2) in the next ST bus cycle.
- · After receiving 2), the intelligent function module outputs 3) to the external device.

- When receiving the CH
 output enable/disable flag, the intelligent function module receives 1) and 2) in the same ST bus cycle.
- After receiving 1) and 2), the intelligent function module outputs 3) to the external device.

4.3 Control Functions

This section explains the functions used to control each slice module.

4.3.1 Setting of output status at module error

(1) Setting of output status at module error

This is set to determine whether the refresh of output data to the other normallyoperating output modules and intelligent function modules will be stopped or continued when an error occurs in a slice module (except the power distribution module).

This function is executed when the head module or slice module is in either of the following statuses.

- When the slice module fails to respond due to a hardware fault, etc.
- When the slice module is removed forcibly while the external power supply is on

POINT

- (1) The output status of the slice module where an error occurred changes to the status set with its user parameter.
- (2) The input data are kept refreshed even if an error occurs in the slice module.

(2) Setting at master station

To use the Setting of output status at module error, the output status in the event of a module error must be set on the configuration software of the master station. Use the "Output status at module error" user parameter to make this setting. The setting items of Output status at module error are as follows.

Item	Description	
Stop (Default)	When a slice module error occurs, the output data of the normally operating output module and intelligent function module are brought into the statuses preset by the user parameters *1 of the corresponding slice modules.	
Continue	When a slice module error occurs, the output data of the normally operating output module and intelligent function module are kept refreshed.	

*1: For the user parameters of the output module and intelligent function module, refer to the relevant manuals.

(3) I/O status at error occurrence

(a) When communication timeout occurs between head module and master station

The following shows the I/O statuses of the normally operating slice modules when a communication timeout occurs between the head module and the master station.

In order to detect a communication timeout with the master station, the communication watchdog timer must be preset using configuration software on the master station.

For details, refer to Section 6.2.

Туре	Slice module	I/O status (RUN LED flicker (1s interval))	
Output	Output module	Hold/Clear	
	Intelligent function module	Hold/Clear/Preset *1	
Input	Input module	Refresh	
	Intelligent function module		

*1: The Hold/Clear/Preset status changes depending on the Bw.n Bit output status prior to error occurrence.

For details, refer to the manual of the intelligent function module.

REMARK

If the communication watchdog timer has not been set, no communication timeout will be detected.

The slice module I/O status will be in the refresh status (RUN LED on).

(b) When error occurs in other slice module

When an error occurs in the other slice module, the I/O statuses of the normally operating slice modules are as indicated below.

Туре	Slice module	I/O status		
		When "Stop" is selected	When "Continue" is selected	
		(RUN LED flicker (1s interval))	(RUN LED on)	
Output	Output module	Hold/Clear *1	Refresh	
	Intelligent function module	Hold/Clear/Preset *1 *2		
Input	Input module		Refresh	
	Intelligent function module	Keiresh		

*1: When other faulty slice module is replaced with a normal one by the online module change, the Hold/Clear/Preset status is turned into the refresh status (RUN LED on) upon completion of the online module change.

*2: The Hold/Clear/Preset status changes depending on the Bw.n Bit output status prior to error occurrence. For details, refer to the manual of the intelligent function module.

4.3.2 Status monitor

(1) Status monitor

Various information of the head module and slice modules can be monitored using input data, a command request from the master station or GX Configurator-ST.

(2) Items that can be monitored

The following table indicates various information that can be monitored by the status monitor.

Monitored item		Monitoring method		
		2)	3)	
Operating status of each module (Input data: Br Bit input area)	0	×	0	
Existence and information of error that occurred in each module (Input data: Er Error information area)	0	×	0	
Mounting status of each module (Input data: Mr Module status area)		×	0	
Error code of error that occurred in each module		0	0	
Error history of head module		0	0	

1) Confirmation using I/O data (refer to Section 3.2.3)

2) Confirmation by execution of command from master station (refer to Chapter 8)

3) Confirmation using GX Configurator-ST (refer to (3) in this section)
(3) When using GX Configurator-ST for monitoring

When monitoring each module from GX Configurator-ST, activate the System Monitor screen.

For details, refer to the GX Configurator-ST Manual.

4.3.3 Intelligent function module parameter read/write

- Intelligent function module parameter read/write Parameters can be read from or written to the ROM or RAM of the intelligent function module.
- (2) Intelligent function module parameter read/write operation Read or write the intelligent function module parameters as described below.
 - (a) User parameters
 - 1) Reading the user parameters
 - Read the user parameters in either of the following methods.
 - Execute a command from the master station.
 - Use GX Configurator-ST.
 - 2) Writing the user parameters

Write the user parameters in either of the following methods.

- Make setting using the configuration software of the master station.
- When testing the MELSEC-ST system singly, make setting using GX Configurator-ST.
- (b) Command parameters
 - 1) Reading the command parameters

Read the command parameters in either of the following methods.

- Execute a command from the master station.
- Use GX Configurator-ST.
- 2) Writing the command parameters

Write the command parameters in either of the following methods.

- Execute a command from the master station.
- Make setting using GX Configurator-ST.

REMARK

For details of intelligent function module parameter read/write, refer to the manual of the intelligent function module.

4.4 Online module change

 Online module change function The I/O modules and intelligent function modules can be replaced without stopping the MELSEC-ST system. An online module change can be executed by operation of the head module buttons or from GX Configurator-ST.

4.4.1 Precautions for the online module change

The precautions for the online module change are given below.

- (1) To perform the online module change, the system configuration must be appropriate for execution of the online module change.
 For details, refer to the MELSEC-ST System User's Manual, "3.4 Precautions for System Configuration".
 Executing the online module change in an inappropriate system configuration may result in malfunction or failure.
 In such a system configuration, shut off all phases of the external power supply for the MELSEC-ST system to replace a slice module.
- (2) Be sure to perform an online module change in the procedure given in section 4.4.2.Failure to do so can cause a malfunction or failure.
- (3) Before starting an online module change, confirm that the external device connected with the slice module to be removed will not malfunction.
 It is recommended to set 0 (OFF) to Bw.n Bit output and Ww.n Word output of the slice module to be replaced in advance.
- (4) Only the slice modules of the same model name can be replaced online. It is not possible to replace with the slice module of different model name and addition of slice modules is not allowed.
- (5) Only one slice module can be replaced in a single online module change. To replace multiple slice modules, perform an online module change for each module.
- (6) This function is available for I/O module and intelligent function module; not available for power distribution module and base module. Shut off all phases of the external power supply before installing or removing the power distribution module and/or the base module. Failure to do so may result in damage to all devices of the MELSEC-ST system.
- (7) While an online module change is being executed (while the REL. LED of the head module is on), no command can be executed from the master station to the slice module being replaced online. To do so will cause an error.

- (8) While the slice module is being replaced online (while the head module's REL. LED is on), change its user parameter setting from the master station after the online module change is completed. If the user parameter setting is changed from the master station during the online module change, the new setting is not validated since the user parameters saved in the head module are written over the new user parameter values when the online module change is finished.
- (9) During an online module change, the ERR. LED of the head module turns on only when an error related to the online module change occurs. It will not turn on or flicker when any other error occurs.
- (10) While an online module change is being executed (while the REL. LED of the head module is on), the following data of the slice module being replaced online all turn to 0 (OFF).
 - Br.n Bit input
 - Er.n Error information
 - Mr.n Module status
 - Wr.n Word input
- (11) When the communication with the master station is disconnected, replacing the output module online, whose CLEAR/HOLD setting is set to HOLD, turns the Bw.n Bit Output value to 0 (OFF).
 After the online module change is finished, the Bw.n Bit Output value will not return to the held value.
- (12) When the forced output test is executed on the slice module being replaced online, only Ew.n Error Clear can be tested.

Bw.n Bit Output and Ww.n Word Output cannot be tested.

4.4.2 Procedures for online module change

This section explains the procedures for the online module change. Replace a module online as shown below.

*1: Refer to the MELSEC-ST System User's Manual, "3.4 Precautions for System Configuration".

*2: Refer to "Preparation for online module change" in the corresponding slice module manual.

*3: Refer to "External device connection and disconnection procedures for online module change".

4.4.3 Online module change using head module buttons

Œ

Head Module

This section explains the procedures for the replacing a module online by operating the buttons on the head module.

Before replacing slice module

- 1) Specify the module to be replaced online. Press the "+" button of the head module. Then, the RUN LED of the bus refreshing module mounted next to the head module flickers at intervals of 0.25 seconds. By pressing the "+" and/or "-" buttons, make the target module's RUN LED flicker (at 0.25s intervals). *1 When terminating the online module change, press the "+" and/or "-" buttons until the RUN LED of the head module flickers (at 0.25s intervals) again. For the "+", "-" button operation, refer to the REMARK below. *1: If the RUN LED does not flicker (at 0.25s intervals), the slice
 - module may have a hardware fault. Use GX the Configurator-ST to perform the online module change.

When not using the GX Configurator-ST, specify the slice module to be replaced as follows:

• By making the RUN LEDs of both adjacent slice modules flicker (at 0.25s intervals), confirm the module to be replaced.

REMARK

The following explains how to operate the + and - buttons of the head module.

(No.2) (No.3) (No.5) (No.6) No.1 No.0 MB1.80 ō Ó Ö RUN LED. RUN LED flickering order (when + button is operated) RUN LED flickering order (when - button is operated)

- 1) When the + button is pressed, the RUN LED of the No. 1 (bus refreshing module on the right of the head module) flickers (at 0.25s intervals).
- 2) Every time the + button is pressed, the RUN LED flickers (at 0.25s intervals) in order of the No. 2 to No. 6.
- 3) After the RUN LED of the No. 6 slice module has flickered (at 0.25s intervals), further pressing the + button returns to the head module. Note that the ON status of the head module's RUN LED does not change. Refer to Section 5.3 (1) for the flickering status of the head module's

<When - button is pressed>

- 1) When the button is pressed, the RUN LED of the No. 6 (right-end slice module of the MELSEC-ST system) flickers (at 0.25s intervals).
- 2) Every time the button is pressed, the RUN LED flickers (at 0.25s intervals) in order of the No. 5 to No. 1.
- 3) After the RUN LED of the No. 1 slice module has flickered (at 0.25s intervals), further pressing the - button returns to the head module. Note that the status of the head module's RUN LED does not change. Refer to Section 5.3 (1) for the flickering status of the head module's RUN LED.

2) Keep pressing the RELEASE button of the head module until its REL. LED lights up.

When the REL. LED turns on, the head module saves the user parameters and command parameters from the target slice module into the head module.

Since the following conditions means the online module change is available, release the RELEASE button.

- The REL. LED of the head module turns on. *2
- The RUN LED of the slice module to be replaced turns OFF.
- *2: If the REL. and ERR. LEDs turn on, an error may have occurred during online module change. Check the error and take corrective actions. For error code reading and details, refer to Section 9.2.

Disconnection from external device

Switch

3) Disconnect the external device from the slice module to be replaced online.

For details, refer to "External device connection and disconnection procedures for online module change" in the corresponding slice module manual.

POINT

If the disconnection procedure given in the relevant slice module manual cannot be executed, shut off all phases of the external power supply for the MELSEC-ST system to replace the slice module.

Replacing slice module

- 4) Remove the slice module to be replaced from the base module.
- 5) Mount a new slice module with the same model name as the one of the removed.

When step 8) has completed in this status, the intelligent function module starts its operation with the command parameters set as default.

 Press the RELEASE button again and hold it until the REL. LED turns off. *5

When the REL. LED turns off, the online module is complete. *6 Release the RELEASE button.

After the REL. LED turns off, the head module enters the normal mode and resumes the operation such as I/O data refreshing.

- *5: If the RELEASE button is released before the REL. LED turns off, the following status (status after completion of operation in step 2)) will result.
 - The REL. LED of the head module turns on.
 - The RUN LED of the slice module changed online turns off. Operations can be retried from step 4).
- *6: If the REL. and ERR. LEDs turn on, an error may have occurred during online module change.

Check the error and take corrective actions.

For error code reading and details, refer to Section 9.2.

4.4.4 Online module change from GX Configurator-ST

Here is an explanation of how to replace a module online from GX Configurator-ST.

POINT

If a slice module different from the target one is selected by mistake, restart the operation as instructed below.

- To restart the operation at step 3)
 Click the Cancel button on the screen to terminate online module change.
- (2) To restart the operation at step 4) Click the <u>Next</u> button without executing online module change, continue to step 10) and then terminate online module change.
- (3) To restart the operation at step 8) Mount the removed slice module again, click the <u>Next</u> button, continue to step 10) and then terminate online module change.
 - Preparation for replacing slice module

- 1) Select the slice module to be replaced online on the "System
 - Monitor" screen.

- Forced Output Test Mode ON OFF OFF Input/Output Forced Outr Monitor.. Test... Offset/Gain Module Del Setting.. Information Online Module Paramete Change. Setting... Close
- 2) Click the Online Module Change button on the "System Monitor" screen.

Then, confirm that the RUN LED of the selected slice module is flashing at 0.25s intervals.

REMARK

In addition to above, the following operations are also available.

- Select [Diagnostics] \rightarrow [Online Module Change].
- Right-click the slice module selected at step 1), and click [Online Module change] on the menu.

(Continued to next page.)

(From the previous page.)

Online Module Change	
Target Module No. : 3 Slice No. : 5 Module Name : STIDA2-V Label Name :	
Base Module : ST1B-*4IR2 Start Online Module Change. 1.Please confirm the module. 2.Please click "Next" button.	
Next>	Cancel

- 3) Confirm that the slice module displayed as "Target Module" is the slice module to be replaced and click the Next button.
 - (a) Clicking the Next button validates the settings and the following will be performed.
 - Puts the head module into the online module change mode.
 - Transfers the user parameters and command parameters of the target slice module to the head module.
 - (b) After clicking the Next button, confirm the following module statuses.
 - The REL. LED of the head module is on.
 - The RUN LED of the target slice module is off.
 - The "Module Status" indicator of the target module has turned purple. This applies only when monitoring from the "System Monitor" screen.
 - (c) If the user parameters and command parameters cannot be read from the slice module, both REL. LED and ERR. LED of the head module turns on, and the error message will appear on the screen at step 8).

In this case, confirm the error details and take corrective action. For how to read error codes and error code details, refer to Section 9.2.

When not executing online module change, click the Cancel button.

(a) Clicking the Cancel button causes the screen to show that online module change is cancelled.

Clicking the Exit button returns to the step 2).

↓ (Continued to next page.) (From the previous page.)

(Continued to next page.)

(From the previous page.) Connection to external device after replacement T) After mounting a new slice module, connect it to the external device. For details, refer to "External device connection and disconnection procedures for online module change". Dependions after external device connection

 After connecting the external device, click the Next button on the screen in step 4).

(a) Clicking the Next button performs the following.

- Checks whether the module name of the newly mounted slice module is the same as that of the removed one.
- Writes the user parameters and command parameters transferred to the head module (at step 3)) to the newly mounted slice module.
- (b) After clicking the Next button, confirm the following module statuses.
 - The REL. LED of the head module is flashing.
 - The RUN LED of the newly mounted slice module is flashing (at 0.25s intervals).

Clicking the Cancel button, i.e., interrupting online module change returns to step 1) In this case, select the same slice module as selected before, and complete online module change. Note that selecting different one causes an error.

When the user parameters and command parameters could not be read from the old slice module by the operation in step 3), the REL. LED and ERR. LED of the head module turn on and the screen shown on the left appears on GX Configurator-ST.

In this case, confirm the error details and take corrective action.

For how to read error codes and error code details, refer to Section 9.2.

When step 10) has completed in this status, the intelligent function module starts its operation with the command parameters set as default.

- Target Modu	le
No.	: 3
Slice No.	: 5
Module Nam	e : ST1DA2-V
Label Name	1
Base Module	: ST1B-*4IR2
Failed to write	the parameter.
Failed to write Please click ''N	he parameter. Lext" button to operate with default parameters.
Failed to write Please click ''h n case of cha with ''Paramete	he parameter. Lext" button to operate with default parameters. nging the parameter settings, please close with "Cancel" button, write parameters r Setting" and after that execute "Online Module Change" again.

(From the previous page.) \downarrow

Online Module	Change 🛛 🔀
Target Module	
No. :	3
Slice No. :	5
Module Name :	ST1DA2-V
Label Name :	
Base Module :	ST1B-*4IR2
Please click "Nex Online Module Ch	t" button to start the changed module operations. ange can be cancelled by "Cancel" button.
	Next > Cancel

- 9) Clicking the Next button releases the head module from the online module change mode.
 - (a) Clicking the Next button performs the following.
 - Releases the head module from the online module change mode.
 - Restarts refreshing the I/O data, etc.
 - (b) After clicking the Next button, confirm the following module statuses.
 - The REL. LED of the head module is off.
 - The RUN LED of the newly mounted slice module is on.
 - The "Module Status" indicator of the target slice module has turned white. This applies only when monitoring from the "System Monitor" screen.
 - (c) If the head module cannot be released from the online module change mode, both REL. LED and ERR. LED of the head module turn on.

In this case, confirm the error details and take corrective action.

For how to read error codes and error code details, refer to Section 9.2.

When interrupting online module change, click the Cancel button.

(a) Clicking the Cancel button, i.e., interrupting online module change returns to step 1). In this case, select the same slice module as selected before, and complete online module change.

Note that selecting different one causes an error.

Cancel

↓

(Completed)

10) The left screen appears showing that online module change has been completed.

Click the Finish button.

5 PRE-OPERATION PROCEDURE AND SETTING

This chapter explains the procedure and setting method for operating the head module in the MELSEC-ST system.

5.1 Mounting and Installation

This section explains the handling precautions on procedures from product unpacking to mounting.

For the mounting and installation of the MELSEC-ST system, refer to the MELSEC-ST System User's Manual.

5.1.1 Handling precautions

This section explains the precautions for handling the head module singly.

- Do not drop or give a strong impact to the module since its case is made of resin. Doing so can damage the module.
- (2) Do not disassemble or modify the modules.Doing so could cause failure, erroneous operation, injury, or fire.
- (3) Prevent foreign matter such as chips or wiring debris from entering the module. Failure to do so may cause fires, damage, or erroneous operation.

A rough pre-operation procedure is given below.

5.3 Part Names and Settings

This section explains the part names and settings of the head module.

$\overline{\ }$	Name	Description
1)	Operating status LED	Indicates the operating status of the head module. Refer to (1) in this section for details.
2)	FDL address setting switches	Sets the FDL address of the head module and the selection of the self- diagnostics. FDL address setting range: 0 to 99 (factory setting: 0) Selection of self-diagnostics: 150 Refer to Section 5.3.1 for the FDL address setting method.
3)	RS-232 interface connector	Connects the personal computer when using GX Configurator-ST *1.
4)	- button	Used to make online module change and reset the head module.
5)	+ button	Refer to Section 4.4 for online module change operation.
6)	RELEASE button	Refer to Section 5.3.2 for head module reset operation.
7)	PROFIBUS-DP interface connector	Connects the PROFIBUS cable to the head module.

(To next page)

*1: For the system configuration for use of GX Configurator-ST, refer to the GX Configurator-ST Operating Manual.

5 PRE-OPERATION PROCEDURE AND SETTING

	Name	Description
8)	Display plate	Write the FDL address, etc. of the head module.
9)	Base module connector	Connects the power distribution module base next to the right of the head module.
10)	Lock lever	Dismounts the head module from the DIN rail.
11)	DIN rail mounting groove	Mounts the module to the DIN rail.
12)	FG contact	Grounding metal spring. When the module is mounted on the DIN rail, the function ground (FG1) of the corresponding base unit is connected via the DIN rail.

(1) Operating status LED

LED indication	LED status *1	*1 Description						
	On	Normally operating						
RUN	Flickering	Self-diagnostics or forced of	output test mode l	peing executed				
	Off	Watchdog time error occur	red or external po	ower-off				
	On	Error occurred in head mod 9.2)	dule or slice modu	ule (Refer to Section				
ERR.	Flickering	Communication error or FDL address change error occurred (Refer to Section 9.2)						
	Off	Head module and slice mo	dule normal					
	On			•				
REL.	Flickering	Module being changed online (Refer to Section 4.4)						
	Off	Online module change con	Online module change completed or not yet executed					
	On	Extended diagnostic inform (Refer to Section 4.2.3)	nation being sent	to master station				
DIA	Flickering	Self-diagnostics of head module being executed						
	Off	No extended diagnostic information						
	On	PROFIBUS-DP data communication stop						
DF	Off	PROFIBUS-DP data comm	nunication normal					
		The M0 LED and M1 LED indicate the maximum input/output points setting status of the head module. The M0 LED and M1 LED statuses are indicated below.						
M1		Maximum input/output	LED status					
		points	M1	MO				
	—	32-point mode	Off	Off				
		64-point mode	Off	On				
		128-point mode	On	Off				
MO		256-point mode	On	On				
0)(0)	On	SYNC mode						
SYN.	Off	Normal mode						
	On	FREEZE mode						
FKE.	Off	Normal mode						

*1: All LEDs are off during reset processing.

5.3.1 Setting of FDL address setting switches

This section explains the applications, setting ranges and setting method of the head module's FDL address setting switches.

(1) Applications

Use the FDL address setting switches of the head module for the following:

- Setting the FDL address as a PROFIBUS-DP slave station.
- Executing the self-diagnostics of the head module.

(2) Setting range

Set the FDL address setting switches within the following ranges. They are factory-set to 0 (all OFF).

- When setting the FDL address of the slave station: 0 to 99
- When executing the self-diagnostics: 150

REMARK

Set the FDL address setting switches within the ranges given in (2) in this section. Failure to do so will cause an error when the external power supply of the head module is switched on or the head module is reset.

(3) Setting method

The sum of the switch Nos. of the FDL address setting switches that are set to ON is registered as the FDL address of the head module.

Set the tens place of the FDL address with any of the STATION NO. "10", "20", "40" and "80" switches.

Set the units place of the FDL address with any of the STATION NO. "1", "2", "4" and "8" switches.

	STATION NO.								
FDL address		10s p	blace			1s p	lace		
	80	40	20	10	8	4	2	1	
0	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
1	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON	
2	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF	
3	OFF	OFF	OFF	OFF	OFF	OFF	ON	ON	
4	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF	
:	:			:	:	:	:	:	
10	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	
11	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	
:	:	-	-	•••	•••	:	:	:	
98	ON	OFF	OFF	ON	ON	OFF	OFF	OFF	
99	ON	OFF	OFF	ON	ON	OFF	OFF	ON	

When setting the head module FDL address to "32", set the switches as shown below.

FDL address	STATION NO.							
	10s place				1s place			
	80	40	20	10	8	4	2	1
32	OFF	OFF	ON	ON	OFF	OFF	ON	OFF

		$\rightarrow ON$	
s	80	<u>→ ∎Q</u>	
T	40	N ∎∠	
A T	20	ω 🗖	
i	10	- ■ 4	
	8	თ 🗖	
	4	ത 🔳	
Ν	2		■ : ON
0.	1	∞ □■	

REMARK

Never set the switches as shown below (a sum of the switch Nos. in the units place is 10 or more).

To do so will cause an error in the head module.

FDL address		STATION NO.								
		10s p	olace		1s place					
	80	40	20	10	8	4	2	1		
32	OFF	OFF	ON	OFF	ON	ON	OFF	OFF		

5.3.2 Reset operation

This section explains how to reset the head module using its RELEASE, + and - buttons.

(1) Reset method

Reset the head module as described below.

1) Press the RELEASE, + and - buttons at the same time.

Press 3 buttons simultaneously.

- 2) When all LEDs turn off, reset processing is completed. Release the RELEASE, + and - buttons.
- (2) Reset application

Perform this reset operation when changing the FDL address from 150 to any slave station FDL address (switching from the self-diagnostics to the normal mode) while the external power supply is on.

REMARK

The head module can also be reset from the GX Configurator-ST. In this case, choose [Online] \rightarrow [Reset Head Module]. Refer to the GX Configurator-ST Manual for details.

5.4 Self-diagnostics

Self-diagnostics tests the head module singly.

(1) Self-diagnostics execution procedure

Execute the self-diagnostics in the following procedure.

- (a) When the external power supply of the MELSEC-ST system is on, switch it off.
- (b) Disconnect the PROFIBUS cable from the head module.
- (c) Set the FDL address of the head module to 150 as shown below.

FDL address				STATIO	ON NO.			
		10 p	lace		1 place			
	80	40	20	10	8	4	2	1
150	ON	ON	ON	ON	OFF	OFF	OFF	OFF

- (d) Switch on the external power supply of the MELSEC-ST system.
- (e) The self-diagnostics are then started automatically. While the self-diagnostics are being executed, the RUN LED and DIA LED are flickering.

When the self-diagnostics end, the RUN LED turns on (normal termination) or off (abnormal termination).

(2) Self-diagnostics result

(a) RUN LED turns on (at normal termination) After the self-diagnostics are executed, the RUN LED turns on to indicate a normal termination.

Change the current setting of the head module to the FDL address for a slave station.

(b) RUN LED turns off (at abnormal termination)

After the self-diagnostics are executed, the RUN LED turns off to indicate an abnormal termination.

Execute the self-diagnostics again.

If an error results again, it suggests a hardware fault of the head module. Please check whether the REL. LED, DIA LED and BF LED are on/off after the self-diagnostics, and consult your local Mitsubishi representative, explaining a detailed description of the problem.

5.5 Wiring

This section explains PROFIBUS cable wiring and wiring precautions.

5.5.1 PROFIBUS cable wiring

This section explains the PROFIBUS-DP interface connector pin-outs of the head module, the wiring specifications of the PROFIBUS cable, and the bus terminator.

(1) PROFIBUS-DP interface connector pin-outs

The PROFIBUS-DP interface connector (D-sub 9-pin female connector) pin-outs of the head module are indicated below.

$ \begin{array}{c} 9 \bigcirc & 0 \\ 9 \bigcirc & 0 \\ 8 \bigcirc & 0 \\ 7 \bigcirc & 0 \\ 6 \bigcirc & 2 \\ 6 \bigcirc & 0 \\ 1 \end{array} $	

Pin No.	Signal symbol	Name	Application
1	_	SHIELD *1	Shield, protective earth
2	_	M24V *1	Free
3	B/B'	RxD/TxD-P	Received/sent data-P
4	_	CNTR-P *1	Free
5	C/C'	DGND *2	Data earth
6	_	VP *2	Voltage+
7		P24V *1	Free
8	A/A'	RxD/TxD-N	Received/sent data-N
9		CNTR-N *1	Free

*1: Optional signal.

*2: Signal used to connect the bus terminator.

(2) PROFIBUS cable

The following indicates the PROFIBUS cable specifications and wiring specifications.

(a) PROFIBUS cable

Use the PROFIBUS cable (EN50170 Volume 2: Type A compliant) that satisfies the following specifications.

Item	Transmission line
Applicable cable	Shielded twisted pair cable
Impedance	130 to 165 Ω (f = 3 to 20 MHz)
Capacity	Less than 30pF/m
Conductor resistance	Less than 110 Ω /km
Conductor cross section	0.34mm ² or more

9 8 7 6 6	 ○ 5 ○ 4 ○ 3 ○ 2 ○ 1 	

(b) Wiring specifications

(c) Connector

Use a D-Sub 9-pin male connector for the PROFIBUS cable. The applicable screw size is #4-40 UNC.

(3) Bus terminator

The bus terminator is user-prepared.

5.5.2 Wiring precautions

As one of the conditions to make full use of the head module functions and configure a reliable system, the influence of noise must be minimized in the external wiring. The following gives the precautions for external wiring of the head module.

- Do not install the PROFIBUS cable together with the main circuit and power cables or the load wires used for other than the MELSEC-ST system.
 To do so will cause the head module to be affected by noise and surge induction.
- (2) Separate the PROFIBUS cable as far away as possible from the I/O module wires.

6 PARAMETER SETTING

This chapter explains the head module parameters.

Each of the modules that comprise the MELSEC-ST system has the following parameters.

Dara	motor	Description	S	etting item		m		
Fala	netei	Description	1)	2)	3)	4)		
Slave parameter	Select Modules *1	Dedules Parameters for storing the mounting status (Module Configuration) of each module set by the configuration software of the master station. By setting this parameter, the user parameter setting of each module is enabled.						
	User parameter	Can be set by the configuration software of the master station to use the functions of each module. For the intelligent function module, they can also be set from GX Configurator-ST.	0	×	0	0		
Command parameter		Parameters of the intelligent function module that can be set using a command or GX Configurator-ST.	×	×	×	0		

 \bigcirc : With setting items \times : Without setting items

1) Head module

2) Power distribution module

3) I/O module

- 4) Intelligent function module
- *1: For the Select Modules, be sure to set the model name same as that of the actual module used in the system.

REMARK

For details of the head module's slave parameters, refer to Section 6.1 and 6.2. For the parameters of each slice module, refer to the manual of the corresponding slice module.

6.1 Select Modules

To set the "Select Modules" slave parameter, the configuration of the MELSEC-ST system and the maximum input/output points of the head module must be taken into consideration.

(1) MELSEC-ST system construction

Construct the MELSEC-ST systems within the ranges where the head module and slice modules satisfy the following conditions 1) to 4).

Condition	Description	Range	Reference section
		63 or less modules	
1)	Slice module mounting restriction	(26 or less modules for the intelligent	_
		function modules)	
2)	Sum total of occupied I/O points	256 points or less	
0)	Sum total of Wr.n Word inputs	32 words or less or 52 words or less	Section 6.1.1
3)	Sum total of Ww.n Word outputs	32 words or less or 52 words or less	
4)	Sum total of user parameter sizes	97 bytes or less	Section 6.1.2

REMARK

When the MELSEC-ST system is mounted with no intelligent function modules, the above condition 3) need not be considered.

(2) Selection of maximum input/output points

Select the maximum input/output points setting according to the conditions 2) and 3) in (1) of this section.

The maximum input/output points determine the sizes of the input data and output data.

Refer to Section 6.1.1 for the selection and setting of the maximum input/output points.

6.1.1 Selection and setting of maximum input/output points

To use the head module, the maximum input/output points must be set in consideration of the following items.

- [A] Sum total of occupied I/O points of MELSEC-ST system (Refer to (1) in this section)
- [D] Maximum word input/output points used by intelligent function modules (Refer to (2) in this section)
- (1) Number of occupied I/O points of MELSEC-ST system

Up to 256 points are allowed for [A] Sum total of occupied I/O points of MELSEC-ST system.

Using the following expression, calculate the [A] Sum total of occupied I/O points of MELSEC-ST system.

4 *1 + sum total of occupied I/O points of slice modules *2 = [A] \leq 256

*1: Occupied I/O points of head module

*2: Bus refreshing module on the right of the head module is included.

(2) Sum total of Wr.n Word inputs and Ww.n Word outputs used by intelligent function modules

To mount intelligent function modules in the MELSEC-ST system, the [B] Sum total of $\boxed{Wr.n}$ Word inputs and [C] Sum total of $\boxed{Ww.n}$ Word outputs used by the intelligent function modules must be calculated.

Choose the [B] or [C] value, whichever is greater, as the [D] Maximum word input/output points to make it as the selection target of the maximum input/output points.

REMARK

To the intelligent function module, both the Wr Word input area and Ww Word output area are assigned in the standard setting.

To make effective use of these two areas, only the Wr.n Word inputs or Ww.n Word outputs can be assigned.

Refer to Section 6.1.4 for details.

(3) Selection of maximum input/output points

Set the maximum input/output points to the head module within the range that satisfies the "[A] Sum total of occupied I/O points" and "[D] Maximum word input/output points" obtained in (1) and (2).

The following gives a maximum input/output points selection table.

Sum total of occupied I/O points			Max	imum word ir	nput/output p	oints				
Sum total of occupied i/O points		0 to 32	words		33 to 52 words					
4 to 32 points	32-point mode	64-point mode	128-point mode	256-point mode	32-point mode	64-point mode	128-point mode			
33 to 64 points	_	64-point mode	128-point mode	256-point mode	—	64-point mode	128-point mode			
65 to 128 points	=	_	128-point mode	256-point mode	=	_	128-point mode	—		
129 to 256 points		_		256-point mode	_					

Select the shaded setting when planning an expansion of the MELSEC-ST system for the future.

(4) Setting of maximum input/output points

After the maximum input/output points used in the MELSEC-ST system are selected, they must be set to the head module.

The maximum input/output points determine the I/O data size. (Refer to Section 3.2.)

Set the maximum input/output points using the slave parameter (Select Modules) of the master station.

The setting item of Select Modules is determined by the maximum input/output points and master station's consistency function.

Maximum input/output points	Consistency of master station *1	Select Modules setting
20 naint made	Module unit (9-word or more consistency allowed)	ST1H-PB 32ptswhole consistent
32-point mode	Word unit	ST1H-PB 32ptsword consistent
C4 point mode	Module unit (14-word or more consistency allowed)	ST1H-PB 64ptswhole consistent
64-point mode	Word unit	ST1H-PB 64ptsword consistent
	Module unit (24-word or more consistency allowed)	ST1H-PB 128ptswhole consistent
128-point mode	Word unit	ST1H-PB 128ptsword consistent
	Module unit (44-word or more consistency allowed)	ST1H-PB 256ptswhole consistent
256-point mode	Word unit	ST1H-PB 256ptsword consistent

*1: When using the master station that cannot prevent inconsistency of each module, choose a word consistent setting item.

When the word unit item is set, consistency of data is not guaranteed if the data is split across the word units as shown in the following example.

<When data are not guaranteed>

When Bw.n Bit outputs and Ew.n Error clear of the slice module are assigned to 2 words

	Bw.0F	Bw.0E	Bw.0D	Bw.0C	Bw.0B	Bw.0A	Bw.09	Bw.08	Bw.07	Bw.06	Bw.05	Bw.04	Bw.03	Bw.02	Bw.01	Bw.00
$\left(\right)$	7 6		5 4			es	3	2	2	1			0			

Bw.1F Bw.1	Bw.1D	Bw.1C	Bw.1B	Bw.1A	Bw.19	Bw.18	Bw.17	Bw.16	Bw.15	Bw.14	Bw.13	Bw.12	Bw.11	Bw.10	~
15	1	4	1:	3	1	2	1	1	1	0	ę	9	8	3	

When the start slice No. is "7" and the number of occupied slices is "2", data are not guaranteed since the $\boxed{Bw.n}$ Bit output information of the slice module are assigned to 2 words.

6.1.2 User parameter size

To construct a MELSEC-ST system, the sum total of [E] User parameter size must be considered.

Construct the MELSEC-ST system so that the [E] User parameter size does not exceed 97 bytes.

The following is the expression for calculating the maximum user parameter size.

2 + number of mounted slice modules + sum total of occupied slices of intelligent function modules = [E] ≤ 97

6.1.3 Parameter setting example

The following system configuration example is used to explain a parameter setting example and I/O data assignment.

(1) System configuration example

The following system configuration example is used to make explanation in this section.

(2) Setting of maximum input/output points

In the system configuration example in (1) of this section, the "[A] Sum total of occupied I/O points" and "[D] Maximum word input/output points" are as listed below.

(The following table uses the maximum input/output points setting sheet provided in Appendix 2.1.)

No.	Module Name	Number of Occupied I/O Points	Start Slice No. (Number of occupied slices)	Wr.n	Ww.n	5V DC Internal Current Consumption (Total)	24V DC Current (Total)	Slot Width (Total)
0	ST1H-PB	4	0(2)		_	0.530A(0.530A)	0A(0A)	_
1	ST1PSD	2	2(1)		_	_	—	25.2mm(25.2mm)
2	ST1X2-DE1	2	3(1)		_	0.085A(0.615A)	*1	12.6mm(37.8mm)
3	ST1Y2-TE2	2	4(1)		_	0.090A(0.705A)	*1	12.6mm(50.4mm)
4	ST1PDD	2	5(1)	_	—	0.060A(0.765A)	_	12.6mm(63.0mm)
5	ST1AD2-V (without Ww)	4	6(2)	2	0	0.110A(0.875A)	*1	12.6mm(75.6mm)
6	ST1DA2-V	4	8(2)	2	2	0.095A(0.970A)	*1	12.6mm(88.2mm)
Tota	al	20	_	4	2	_	_	_

*1: The 24V DC current changes depending on the external device connected to each slice module.

Confirm the current consumption of the external device connected to each slice module, and calculate the total value.

Refer to the MELSEC-ST System User's Manual for details of current consumption calculation.

According to the above table

• [A] Sum total of occupied I/O points = 20

[D] Maximum word input/output points = 4

By applying the [A] and [D] values to the maximum input/output points selection table in Section 6.1.1 (3), the "32-point mode" can be selected.

Also, since the [E] User parameter size is as follows:

[E] = 2 + number of mounted slice modules + sum total of occupied slices of intelligent function modules $= 2 + 6 + (2 + 2) = 12 \le 97$

the MELSEC-ST system can be constructed.

Refer to the next section (3) for I/O data assignment under the "32-point mode" setting in the system configuration example in the previous section (1).

(3) I/O data assignment

The following shows the I/O data assignment result in the system configuration example in (1) of this section.

(a) Input data

Offset address	b15							b8	b7							b0			
	Br.0F	Br.0E	Br.0D	Br.0C	Br.0B	Br.0A	Br.09	Br.08	Br.07	Br.06	Br.05	Br.04	Br.03	Br.02	Br.01	Br.00	ון		
+0	No.5				N		 No	o.3	 No.2		 No.1		No 0		I				
	Br.1F	Br.1E	Br.1D	Br.1C	Br.1B	Br.1A	Br.19	Br.18	Br.17	Br.16	Br.15	Br.14	Br.13	Br.12	Br.11	Br.10		≻ <u>Br</u> Bit input area	
+1						()							No	o.6				
	Er.0F	Er.0E	Er.0D	Er.0C	Er.0B	Er.0A	Er.09	Er.08	Er.07	Er.06	Er.05	Er.04	Er.03	Er.02	Er.01	Er.00	11		
+2		No	o.5		N	o.4	No	o.3	No	o.2	N	o.1		No	o.0		1	Er Error	
	Er.1F	Er.1E	Er.1D	Er.1C	Er.1B	Er.1A	Er.19	Er.18	Er.17	Er.16	Er.15	Er.14	Er.13	Er.12	Er.11	Er.10		f information	
+3					0								No.6]]			
+4	Mr.15	Mr.14	Mr.13	Mr.12	Mr.11	Mr.10	Mr.9	Mr.8	Mr.7	Mr.6	Mr.5	Mr.4	Mr.3	Mr.2	Mr.1	Mr.0		Mr Module	
+4	0 No						o.6	No.5 No.4 No.3 No.2 No.1 No.0						o.0		existence			
+5		Cr.0	(15-8)	Comn	nand e	xecutio	on resi	ult	С	r.0(7-0) Star	t slice	No. of e	execut	ion tar	get			
+6						С	r.1 Ex	ecute	d comr	nand N	lo.] [Cr Command	
+7							Cr.	2 Res	sponse	e data 1	1							result area	
+8							Cr.	3 Res	sponse	e data 2	2						IJ		
+9							Ŋ	Wr.00	For N	o. 5])		
+10	Wr.01 For No. 5													Wr Word input					
+11							N	Wr.02	For N	o. 6] [^C area	
+12								Wr.03	For N	o. 6							IJ		

No. 0: Head module (ST1H-PB)

No. 1: Bus refreshing module (ST1PSD) No. 2: Input module (ST1X2-DE1)

No. 3: Output module (ST1Y2-TE2)

No. 4: Power feeding module (ST1PDD)

No. 5: Intelligent function module (ST1AD2-V (without Ww)) No. 6: Intelligent function module (ST1DA2-V)

Offect

utput data
)

address	b15							b8	b7							b0		
	Bw.0F	Bw.0E	Bw.0D	Bw.0C	Bw.0B	Bw.0A	Bw.09	Bw.08	Bw.07	Bw.06	Bw.05	Bw.04	Bw.03	Bw.02	Bw.01	Bw.00]]	
+0	No.5				No	o.4	No	o.3	No	No.2 No. ¹		o.1	No.0				Bw Bit output	
	Bw.1F	Bw.1E	Bw.1D	Bw.1C	Bw.1B	Bw.1A	Bw.19	Bw.18	Bw.17	Bw.16	Bw.15	Bw.14	Bw.13	Bw.12	Bw.11	Bw.10		area
+1	0 No.6																	
	Ew.0F	Ew.0E	Ew.0D	Ew.0C	Ew.0B	Ew.0A	Ew.09	Ew.08	Ew.07	Ew.06	Ew.05	Ew.04	Ew.03	Ew.02	Ew.01	Ew.00		
+2	No.5			No	o.4 No.3		No.2 No		o.1	No.0				Ew Error clear				
	Ew.1F	Ew.1E	Ew.1D	Ew.1C	Ew.1B	Ew.1A	Ew.19	Ew.18	Ew.17	Ew.16	Ew.15	Ew.14	Ew.13	Ew.12	Ew.11	Ew.10		area
+3	0 No.6																	
+4	Sw.0 System Area 1										}	Sw System						
+5	Cw.0 Start slice No. of execution target										$\left \right\rangle$							
+6	Cw.1 Command No. to be executed											Cw Command						
+7	Cw.2 Argument 1												execution area					
+8	Cw.3 Argument 2											IJ						
+9	Ww.00 For No. 6										$\left \right $	Ww Word						
+10	Ww.01 For No. 6										ſ	output area						

No. 0: Head module (ST1H-PB) No. 1: Bus refreshing module (ST1PSD) No. 2: Input module (ST1X2-DE1) No. 3: Output module (ST1Y2-TE2)

No. 4: Power feeding module (ST1PDD) No. 5: Intelligent function module (ST1AD2-V (without Ww)) No. 6: Intelligent function module (ST1DA2-V)

6.1.4 Word input/output points of intelligent function modules

To the intelligent function module, both the Wr Word input area and Ww Word output area are assigned in the standard setting. To make effective use of these two areas, only the Wr.n Word inputs or Ww.n Word outputs can be assigned.

- (1) Changing the word input/output points of intelligent function module
 - (a) Intelligent function module not using Ww.n Word outputs
 For the intelligent function module that can be operated by only the Wr.n
 Word inputs, the points of the Ww Word output area can be changed to 0
 by the configuration software of the master station.
 When not using the Ww.n Word outputs, select the model name provided with a comment "(without Ww)" when selecting the module on the configuration software of the master station.
 - (b) Intelligent function module not using Wr.n Word inputs For the intelligent function module that can be operated by only the Ww.n Word outputs, the points of the Wr Word input area can be changed to 0 by the configuration software of the master station. When not using the Wr.n Word inputs, select the model name provided with a comment "(without Wr)" when selecting the module on the configuration software of the master station.
- (2) Example of changing the word input/output points

In the system configuration example in (2) (a) of this section, it is desired to set the maximum input/output points to the 256-point mode since the [A] Sum total of occupied input/output points are 146.

However, it is not possible because the [D] Maximum word input/output points exceed 32 words.

If the word input/output points of the intelligent function module are changed as in (2) (b) of this section, the [D] Maximum word input/output points are 18 words and the 256-point mode can be set.

(a) Example where the used word input/output points exceed 32 words though it is desired to set the maximum input/output points to the 256-point mode.

1)	System	configuration	example
----	--------	---------------	---------

|--|

2) Setting of maximum input/output points

The following table uses the maximum input/output points setting sheet given in Appendix 2.1.

		Number of	Start Slice No.			5V DC Internal	24\/ DC Current	
No.	Module Name	Occupied I/O	(Number of	Wr.n	Ww.n	Current Consumption	Z4V DC Current (Total)	
		Points	occupied slices)			(Total)	(Total)	(Total)
0	ST1H-PB	4	0(2)			0.530A(0.530A)	0A(0A)	_
1	ST1PSD	2	2(1)		-	_	_	25.2mm(25.2mm)
2	ST1X16-DE1	16	3(8)	_		0.120A(0.650A)	*1	101.0mm(126.2mm)
3	ST1Y16-TE2	16	11(8)	-	l	0.150A(0.800A)	*1	101.0mm(227.2mm)
4	ST1PSD	2	19(1)			—		25.2mm(252.4mm)
5	ST1AD2-V	4	20(2)	2	2	0.110A(0.110A)	*1	12.6mm(265.0mm)
6	ST1AD2-V	4	22(2)	2	2	0.110A(0.220A)	*1	12.6mm(277.6mm)
7	ST1AD2-V	4	24(2)	2	2	0.110A(0.330A)	*1	12.6mm(290.2mm)
8	ST1AD2-V	4	26(2)	2	2	0.110A(0.440A)	*1	12.6mm(302.8mm)
9	ST1AD2-V	4	28(2)	2	2	0.110A(0.550A)	*1	12.6mm(315.4mm)
10	ST1AD2-V	4	30(2)	2	2	0.110A(0.660A)	*1	12.6mm(328.0mm)
11	ST1AD2-V	4	32(2)	2	2	0.110A(0.770A)	*1	12.6mm(340.6mm)
12	ST1AD2-V	4	34(2)	2	2	0.110A(0.880A)	*1	12.6mm(353.2mm)
13	ST1AD2-V	4	36(2)	2	2	0.110A(0.990A)	*1	12.6mm(365.8mm)
14	ST1AD2-V	4	38(2)	2	2	0.110A(1.100A)	*1	12.6mm(378.4mm)
15	ST1AD2-V	4	40(2)	2	2	0.110A(1.210A)	*1	12.6mm(391.0mm)
16	ST1AD2-V	4	42(2)	2	2	0.110A(1.320A)	*1	12.6mm(403.6mm)
17	ST1AD2-V	4	44(2)	2	2	0.110A(1.430A)	*1	12.6mm(416.2mm)
18	ST1PSD	2	46(1)			—		25.2mm(441.4mm)
19	ST1DA2-V	4	47(2)	2	2	0.095A(0.095A)	*1	12.6mm(454.0mm)
20	ST1DA2-V	4	49(2)	2	2	0.095A(0.190A)	*1	12.6mm(466.6mm)
21	ST1DA2-V	4	51(2)	2	2	0.095A(0.285A)	*1	12.6mm(479.2mm)
22	ST1DA2-V	4	53(2)	2	2	0.095A(0.380A)	*1	12.6mm(491.8mm)
23	ST1DA2-V	4	55(2)	2	2	0.095A(0.475A)	*1	12.6mm(504.4mm)
24	ST1DA2-V	4	57(2)	2	2	0.095A(0.570A)	*1	12.6mm(517.0mm)
25	ST1DA2-V	4	59(2)	2	2	0.095A(0.665A)	*1	12.6mm(529.6mm)
26	ST1DA2-V	4	61(2)	2	2	0.095A(0.760A)	*1	12.6mm(542.2mm)
27	ST1DA2-V	4	63(2)	2	2	0.095A(0.855A)	*1	12.6mm(554.8mm)
28	ST1DA2-V	4	65(2)	2	2	0.095A(0.950A)	*1	12.6mm(567.4mm)
29	ST1DA2-V	4	67(2)	2	2	0.095A(1.045A)	*1	12.6mm(580.0mm)
30	ST1DA2-V	4	69(2)	2	2	0.095A(1.140A)	*1	12.6mm(592.6mm)
31	ST1DA2-V	4	71(2)	2	2	0.095A(1.235A)	*1	12.6mm(605.2mm)
Tota	al	146	_	52	52	_	_	

*1: The 24V DC current changes depending on the external device connected to each slice module.

Confirm the current consumption of the external device connected to each slice module, and calculate the total value.

Refer to the MELSEC-ST System User's Manual for details of current consumption calculation.

It is desired to set the maximum input/output points to the 256-point mode since the [A] Sum total of occupied I/O points are 146, however, it is not possible because the [D] Maximum word input/output points exceed 32 words.
(b) Example of changing the word input/output points in system configuration example in (a)

										•	/	Ξ.	,	••••			9		••••	•		· P · ·	-								
ST1H-PB	ST 1PSD	ST1X16-DE1	ST1Y16-TE2	ST1PSD	ST1AD2-V(without Ww)	ST 1PSD	ST1DA2-V(without Wr)																								
											Ì															- Se tha	t the it do	inte not	llige use	nt fui Wr.i	nction r

1) System configuration example

 Set the intelligent function modules that do not use Wr.n Word inputs
 Set the intelligent function modules that do not use Ww.n Word outputs

 Setting of maximum input/output points The following table uses the maximum input/output points setting sheet given in Appendix 2.1.

		Number of	Start Slice No.			5V DC Internal		
No.	Module Name	Occupied I/O	(Number of	Wr.n	Ww.n	Current Consumption	24V DC Current	Slot Width
		Points	occupied slices)			(Total)	(Total)	(Total)
0	ST1H-PB	4	0(2)	—	—	0.530A(0.530A)	0A(0A)	—
1	ST1PSD	2	2(1)	-	—	—	—	25.2mm(25.2mm)
2	ST1X16-DE1	16	3(8)	-	—	0.120A(0.650A)	*1	101.0mm(126.2mm)
3	ST1Y16-TE2	16	11(8)	—		0.150A(0.800A)	*1	101.0mm(227.2mm)
4	ST1PSD	2	19(1)	—				25.2mm(252.4mm)
5	ST1AD2-V	4	20(2)	2	0	0.110A(0.110A)	*1	12.6mm(265.0mm)
6	ST1AD2-V	4	22(2)	2	0	0.110A(0.220A)	*1	12.6mm(277.6mm)
7	ST1AD2-V	4	24(2)	2	0	0.110A(0.330A)	*1	12.6mm(290.2mm)
8	ST1AD2-V	4	26(2)	2	0	0.110A(0.440A)	*1	12.6mm(302.8mm)
9	ST1AD2-V	4	28(2)	2	0	0.110A(0.550A)	*1	12.6mm(315.4mm)
10	ST1AD2-V	4	30(2)	2	0	0.110A(0.660A)	*1	12.6mm(328.0mm)
11	ST1AD2-V	4	32(2)	2	0	0.110A(0.770A)	*1	12.6mm(340.6mm)
12	ST1AD2-V	4	34(2)	2	0	0.110A(0.880A)	*1	12.6mm(353.2mm)
13	ST1AD2-V	4	36(2)	2	0	0.110A(0.990A)	*1	12.6mm(365.8mm)
14	ST1AD2-V	4	38(2)	2	0	0.110A(1.100A)	*1	12.6mm(378.4mm)
15	ST1AD2-V	4	40(2)	2	0	0.110A(1.210A)	*1	12.6mm(391.0mm)
16	ST1AD2-V	4	42(2)	2	0	0.110A(1.320A)	*1	12.6mm(403.6mm)
17	ST1AD2-V	4	44(2)	2	0	0.110A(1.430A)	*1	12.6mm(416.2mm)
18	ST1PSD	2	46(1)	—				25.2mm(441.4mm)
19	ST1DA2-V	4	47(2)	0	2	0.095A(0.095A)	*1	12.6mm(454.0mm)
20	ST1DA2-V	4	49(2)	0	2	0.095A(0.190A)	*1	12.6mm(466.6mm)
21	ST1DA2-V	4	51(2)	0	2	0.095A(0.285A)	*1	12.6mm(479.2mm)
22	ST1DA2-V	4	53(2)	0	2	0.095A(0.380A)	*1	12.6mm(491.8mm)
23	ST1DA2-V	4	55(2)	0	2	0.095A(0.475A)	*1	12.6mm(504.4mm)
24	ST1DA2-V	4	57(2)	0	2	0.095A(0.570A)	*1	12.6mm(517.0mm)
25	ST1DA2-V	4	59(2)	0	2	0.095A(0.665A)	*1	12.6mm(529.6mm)
26	ST1DA2-V	4	61(2)	0	2	0.095A(0.760A)	*1	12.6mm(542.2mm)
27	ST1DA2-V	4	63(2)	0	2	0.095A(0.855A)	*1	12.6mm(554.8mm)
28	ST1DA2-V	4	65(2)	0	2	0.095A(0.950A)	*1	12.6mm(567.4mm)
29	ST1DA2-V	4	67(2)	0	2	0.095A(1.045A)	*1	12.6mm(580.0mm)
30	ST1DA2-V	4	69(2)	0	2	0.095A(1.140A)	*1	12.6mm(592.6mm)
31	ST1DA2-V	4	71(2)	0	2	0.095A(1.235A)	*1	12.6mm(605.2mm)
Tota	al	146	_	26	26			_

*1: The 24V DC current changes depending on the external device connected to each slice module.

Confirm the current consumption of the external device connected to each slice module, and calculate the total value. Refer to the MELSEC-ST System User's Manual for details of current consumption calculation.

When the word input/output points of the intelligent function modules are set as in above 1), the [D] Maximum word input/output points are 26 words and the 256-point mode can be set.

6.2 User Parameters

The following table describes the user parameters to be set by the configuration software of the master station.

For the user parameters of each slice module, refer to the relevant manual.

Item	Description	Reference section
	Enter the FDL address of the head module.	
FDL address	[Setting range]	Section 5.3.1
	0 to 99	
	Set the watchdog time. (Set value $ imes$ 10ms)	
Watchdog time	[Setting range]	*1
watchoog time	0 : Watchdog time invalid	小 日
	2 to 65025 : Watchdog time valid	
	Set the minimum response time to be used until a response frame	
esia T. ada	can be sent to the master station.	
min 1_sar	[Setting range]	*
	1 to 255	
	Set the group to which the head module will belong.	
Group identification number	The head module is allowed to belong to multiple groups (Grp 1 to	*1
	Grp 8).	
	Set the output status at a head module error.	
	[Setting range]	Oration 4.0.4
Output status at module error	Stop : Stop (Default)	Section 4.3.1
	Continue: Continue	
	Set whether the master station will be notified of extended	
	diagnostic information.	
Ext_Diag information	[Setting range]	Section 4.2.3
	Disable: Not notified	
	Enable: Notified (Default)	
	Set the swap of high and low bytes of I/O data.	
Swop of input/output data	[Setting range]	Section 4.2.4
Swap of input/output data	Disable: Not swapped (Default)	Section 4.2.4
	Enable: Swapped	
	Set the swap of high and low bytes of extended diagnostic	
	information.	
Swap of Ext_Diag information	[Setting range]	Section 4.2.4
	Disable: Not swapped (Default)	
	Enable: Swapped	
	Set the consistency function.	
Consistency function	[Setting range]	Section 4.2.5
Consistency function	Disable: Consistency disabled	Section 4.2.5
	Enable: Consistency enabled (Default)	

*1: Refer to the manual of the master station configuration software.

7 PROGRAMMING

This chapter explains program examples available when the QJ71PB92D and AJ71PB92D/A1SJ71PB92D are used as the master station.

REMARK

Refer to the following manuals for details of the QJ71PB92D and AJ71PB92D/A1SJ71PB92D.

<QJ71PB92D>

- PROFIBUS-DP Interface Module User's Manual
- SH-080127 (13JR22)
- <AJ71PB92D/A1SJ71PB92D>
 - PROFIBUS-DP Interface Module type AJ71PB92D/A1SJ71PB92D User's Manual
 - IB-66773 (13JL20)

7.1 When Using QJ71PB92D as Master Station

This section explains program examples available when the QJ71PB92D is used as the master station.

Section 7.1.1 and 7.1.2 uses the following system configuration example for explanation.

- System configuration of master station (QJ71PB92D) The system configuration of the master station (QJ71PB92D) used in this section is shown below.
 - (a) System configuration of master station (QJ71PB92D)

(b) Settings of master station (QJ71PB92D)

Item	Setting					
I/O signals	X/Y000 to X/Y01F					
Operation mode		Extended service mode (MODE E)				
I/O data area (buffer memory) for FDL	Input data	0(0н) to 12(0Cн)				
address 1 (MELSEC-ST system)	Output data	960(3C0н) to 972(3CCн)				

REMARK

The MELSEC-ST system changes in I/O data size depending on the maximum input/output point setting and the number of mounted intelligent function modules. Hence, the master station operation mode is set to the extended service mode (MODE E) variable in data size.

(2) System configuration of MELSEC-ST system The following system configuration is used as the MELSEC-ST system for explanation.

(a) System configuration of slave station (MELSEC-ST system)
 1) FDL address: 1

2) Maximum input/output points: 32-point mode

The following table uses the maximum input/output points setting sheet given in Appendix 2.1.

No,	Module Name	Number of Occupied I/O Points	Start Slice No. (Number of occupied slices)	Wr,n	Ww,n	5V DC Internal Current Consumption (Total)	24V DC Current (Total)	Slot Width (Total)
0	ST1H-PB	4	0(2)	-	_	0.530A(0.530A)	0A(0A)	_
1	ST1PSD	2	2(1)	-		_	_	25.2mm(25.2mm)
2	ST1X2-DE1	2	3(1)	_	—	0.085A(0.615A)	*1	12.6mm(37.8mm)
3	ST1Y2-TE2	2	4(1)	_	—	0.090A(0.705A)	*1	12.6mm(50.4mm)
4	ST1PDD	2	5(1)	_	—	0.060A(0.765A)	_	12.6mm(63.0mm)
5	ST1AD2-V	4	6(2)	2	2	0.110A(0.875A)	*1	12.6mm(75.6mm)
6	ST1DA2-V	4	8(2)	2	2	0.095A(0.970A)	*1	12.6mm(88.2mm)
Tota	al	20	—	4	4	_	—	—

*1: The 24V DC current changes depending on the external device connected to each slice module.

Confirm the current consumption of the external device connected to each slice module, and calculate the total value.

Refer to the MELSEC-ST System User's Manual for details of current consumption calculation.

(b) GX Configurator-DP setting

(3) I/O data assignment

The following shows the I/O data assignment result in the system configuration example given in (2) in this section.

(a) Input data

Decimal (Hex	adecima b15	al)						b8	b7							b0		
0(0.)	Br.0F	Br.0E	Br.0D	Br.0C	Br.0B	Br.0A	Br.09	Br.08	Br.07	Br.06	Br.05	Br.04	Br.03	Br.02	Br.01	Br.00]]	1
0(0н)		No	o.5	•	No	o.4	N	o.3	N	o.2	No	o.1		No	o.0			Rr Bit input
1(1)	Br.1F	Br.1E	Br.1D	Br.1C	Br.1B	Br.1A	Br.19	Br.18	Br.17	Br.16	Br.15	Br.14	Br.13	Br.12	Br.11	Br.10		area
1(11)						()			-	-	-		No	o.6		J	
2(211)	Er.0F	Er.0E	Er.0D	Er.0C	Er.0B	Er.0A	Er.09	Er.08	Er.07	Er.06	Er.05	Er.04	Er.03	Er.02	Er.01	Er.00		1
2(21)		No	o.5		No	o.4	N	o.3	N	o.2	N	o.1		No	o.0			Er Error
3(34)	Er.1F	Er.1E	Er.1D	Er.1C	Er.1B	Er.1A	Er.19	Er.18	Er.17	Er.16	Er.15	Er.14	Er.13	Er.12	Er.11	Er.10		information area
0(01)				•		()		•					No	o.6		Į	ulou
4 (4µ)	Mr.15	Mr.14	Mr.13	Mr.12	Mr.11	Mr.10	Mr.9	Mr.8	Mr.7	Mr.6	Mr.5	Mr.4	Mr.3	Mr.2	Mr.1	Mr.0	ļļ	Mr Module
			(0			No	o.6	No	o.5	No.4	No.3	No.2	No.1	No	o.0	ļ	status area
5(5н)		Cr.0	(15-8)]Comn	nand e	xecutio	on res	ult	С	r.0(7-0	Starl	t slice l	No. of	execut	ion tar	get		1
6(6н)						С	r.1 Ex	ecute	d comr	nand N	lo.							Cr Command
7(7н)							Cr	.2 Res	sponse	data 1	1							result area
8(8н)							Cr	.3 Res	sponse	data 2	2						ĮĮ	
9(9н)	Wr.00 For No. 5]]	1							
10(Ан)							[Wr.01	For N	o. 5								Wr Word inpu
11(Вн)							[Wr.02	For N	o. 6								area
12(Сн)			<u>Wr.02</u> For No. 6 Wr.03 For No. 6															

No. 0: Head module (ST1H-PB)

No. 1: Bus refreshing module (ST1PSD)

No. 2: Input module (ST1X2-DE1)

No. 3: Output module (ST1Y2-TE2)

No. 4: Power feeding module (ST1PDD) No. 5: Intelligent function module (ST1AD2-V)

No. 6: Intelligent function module (ST1DA2-V)

Buffer memory address

(b) Output data

Buffer memor Decimal (Hex	y addre adecima b15	ss al)						b8	b7							b0		
	Bw.0F	Bw.0E	Bw.0D	Bw.0C	Bw.0B	Bw.0A	Bw.09	Bw.08	Bw.07	Bw.06	Bw.05	Bw.04	Bw.03	Bw.02	Bw.01	Bw.00]]	
960(3C0H)		No	o.5		No	o.4	No	o.3	No	o.2	No	o.1		No	o.0	-		Bw Bit output
961(3C1 _H)	Bw.1F	Bw.1E	Bw.1D	Bw.1C	Bw.1B	Bw.1A	Bw.19	Bw.18	Bw.17	Bw.16	Bw.15	Bw.14	Bw.13	Bw.12	Bw.11	Bw.10	<u> </u> [area
			1	1		()	1	1		1			No	o.6	1	IJ	
962(3C2H)	Ew.0F	Ew.0E	Ew.0D	Ew.0C	Ew.0B	Ew.0A	Ew.09	Ew.08	Ew.07	Ew.06	Ew.05	Ew.04	Ew.03	Ew.02	Ew.01	Ew.00		
		No	o.5		No	o.4	No	o.3	No	o.2	N	o.1		No	o.0	.	ļļ	Ew Error clear
963(3C3⊦)	Ew.1F	Ew.1E	Ew.1D	Ew.1C	Ew.1B	Ew.1A	Ew.19	Ew.18	Ew.17	Ew.16	Ew.15	Ew.14	Ew.13	Ew.12	Ew.11	Ew.10		area
						()	_						No	o.6		IJ	Sw System
964(3C4 _H)							Sw.0	Syste	em Are	a 1							Į	Area
965(3С5н)					С	w.0 S	Start sli	ce No.	of exe	ecution	target							
966(3С6н)						Cw.1	Comm	nand N	lo. to b	e exec	cuted						ļļ	Cw Command
967(3С7н)							Cw	.2 Arg	ument	1								execution area
968(3C8 _H)							Cw	.3 Arg	ument	2							IJ	
969(3C9н)							Wv	v.00 F	or No.	5								
970(3CAн)							Wv	v.01 F	or No.	5							ļļ	Ww Word
971(3CBн)		Ww.02 For No. 6													output area			
972(3CCн)							Wv	v.03 F	or No.	6							J	

No. 0: Head module (ST1H-PB) No. 1: Bus refreshing module (ST1PSD) No. 2: Input module (ST1X2-DE1) No. 3: Output module (ST1Y2-TE2) No. 4: Power feeding module (ST1PDD) No. 5: Intelligent function module (ST1AD2-V) No. 6: Intelligent function module (ST1DA2-V)

(4) Device assignment in program examples

The program examples in Section 7.1.1 and 7.1.2 use the following device assignment.

(a) Devices used by QJ71PB92D

Device	Application	Device	Application
X0	Exchange start end signal	Y0	Exchange start request signal
X1B	Communication READY signal		
X1D	Module READY signal		_
X1F	Watchdog timer error signal		

(b) Devices used by user

Device	Application	Device	Application
X20	PROFIBUS-DP exchange start command	MO	Refresh start request
X30	ST1H-PB error clear request signal	M100	ST1H-PB error handling start signal
X31	ST1PSD error clear request signal	M110	ST1PSD external AUX. power supply error handling start signal
X32	ST1X2-DE1 error clear request signal	M120	ST1X2-DE1 error handling start signal
X33	ST1Y2-TE2 error clear request signal	M130	ST1Y2-TE2 error handling start signal
X34	ST1PDD error clear request signal	M140	ST1PDD external AUX. power supply error handling start signal
X35	ST1AD2-V error clear request signal	M150	ST1AD2-V error handling start signal
X36	ST1DA2-V error clear request signal	M160	ST1DA2-V error handling start signal
X40	Output condition for ST1Y2-TE2 first output point	M200	ST1H-PB error clear signal
X41	Output condition for ST1Y2-TE2 second output point	M210	ST1PSD error clear signal
X42	ST1AD2-V convert setting request condition	M220	ST1X2-DE1 error clear signal
X43	ST1DA2-V convert setting request condition	M230	ST1Y2-TE2 error clear signal
D100	ST1AD2-V CH1 digital output value read destination	M240	ST1PDD error clear signal
D101	ST1AD2-V CH2 digital output value read destination	M250	ST1AD2-V error clear signal
		M260	ST1DA2-V error clear signal
		M300	Command execution start flag
	_	M301	Processing flag for normal command execution result

Br.n Bit Input	Information	Master Station Side Device	Slice No.	Module Name
Br.00	Module READY	D0.0	0	
Br.01	Forced output test mode	D0.1	0	
Br.02	Module being changed online	D0.2	4	511H-PB
Br.03	Command execution	D0.3	1	
Br.04		D0.4	0	
Br.05	External power supply status	D0.5	2	STIPSD
Br.06	Input status (first point)	D0.6	2	
Br.07	Input status (second point)	D0.7	3	STIXZ-DET
Br.08	System Area (0 fixed)	D0.8	4	
Br.09	System Area (0 fixed)	D0.9	4	511Y2-1E2
Br.0A		D0.A	_	
Br.0B	External AUX. power supply status	D0.B	5	STIPDD
Br.0C	Module READY	D0.C	0	
Br.0D	Convert setting completed flag	D0.D	6	
Br.0E	A/D conversion completed flag	D0.E	7	STIADZ-V
Br.0F	Alarm output signal	D0.F	7	
Br.10	Module READY	D1.0	0	
Br.11	Convert setting completed flag	D1.1	8	
Br.12	System Area (0 fixed)	D1.2	0	STIDAZ-V
Br.13	System Area (0 fixed)	D1.3	9	
Br.14	_	D1.4	_	_
		to		
Br.1F		D1.F	_	_

(c) Devices used by I/O data1) Br Bit Input Area

Er.n Error Information	Information	Master Station Side Device	Slice No.	Module Name	
Er.00		D2.0	0		
Er.01		D2.1	0		
Er.02	Head module error information	D2.2	4	511H-PB	
Er.03		D2.3	1		
Er.04	Bus refreshing module error	D2.4	0	071000	
Er.05	information	D2.5	2	STIPSD	
Er.06		D2.6	0		
Er.07	Nodule error information	D2.7	3	STIX2-DE1	
Er.08		D2.8			
Er.09	Module error information	D2.9	4	S11Y2-1E2	
Er.0A	Power feeding module error	D2.A	ſ		
Er.0B	information	D2.B	5	STIPDD	
Er.0C		D2.C	0		
Er.0D	CH1 error information	D2.D	6		
Er.0E		D2.E	7	STIAD2-V	
Er.0F	CH2 error information	D2.F	1		
Er.10		D3.0			
Er.11	CH1 error information	D3.1	8		
Er.12		D3.2		STIDA2-V	
Er.13	CH2 error information	D3.3	9		
Er.14	_	D3.4	_	_	
		to			
Er.1F	_	D3.F	_	_	

2) Er Error Information Area

Mr.n Module Status	Information	Master Station Side Device	Slice No.	Module Name	
Mr.0		D4.0	0		
Mr.1	Head module status	D4.1	1	ST1H-PB	
Mr.2	Bus refreshing module status	D4.2	2	ST1PSD	
Mr.3	ST1X2-DE1 module status	D4.3	3	ST1X2-DE1	
Mr.4	ST1Y2-TE2 module status	D4.4	4	ST1Y2-TE2	
Mr.5	Power feeding module status	D4.5	5	ST1PDD	
Mr.6		D4.6	6		
Mr.7	STIADZ-V module status	D4.7	7	STIADZ-V	
Mr.8		D4.8	8		
Mr.9	STIDAZ-V module status	D4.9	9	STIDAZ-V	
Mr.10		D4.A	_	_	
		to			
Mr.15		D4.F	_		

3) Mr Module Status Area

4) Cr Command Result Area

Cr.n Command Result Area	Information	Master Station Side Device	Slice No.	Module Name
Cr.0	Cr.0(15-8) Command Execution Result, Cr.0(7-0) Start Slice No. of Execution Target	D5	_	_
Cr.1	Executed Command No.	D6	_	—
Cr.2	Response Data 1	D7		
Cr.3	Response Data 2	D8	_	_

5) Wr Word Input Area

Wr.n Word	Information	Master Station Side Device	Slice No.	Module Name	
Wr.00	CH1 Digital Output Value (Wr.n)	D9	<i>.</i>		
Wr.01	CH2 Digital Output Value (Wr.n+1)	D10	δ	STIAD2-V	
Wr.02	CH1 Digital Value (Wr.n)	D11	0		
Wr.03	CH2 Digital Value (Wr.n+1)	D12	Ø	STIDAZ-V	

Bw.n Bit Output	Information	Master Station Side Device	Slice No.	Module Name					
Bw.00	System Area (0 fixed)	D1000.0	0						
Bw.01	System Area (0 fixed)	D1000.1	0						
Bw.02	System Area (0 fixed)		-SI1H-PB						
Bw.03	Command request	1							
Bw.04	System Area (0 fixed)	stem Area (0 fixed) D1000.4							
Bw.05	System Area (0 fixed)	D1000.5	2	STIPSD					
Bw.06	System Area (0 fixed)	D1000.6	0						
Bw.07	System Area (0 fixed)	D1000.7	3	ST1X2-DE1					
Bw.08	Output status (first point)	4	ST1Y2-TE2						
Bw.09	Output status (second point)	4							
Bw.0A	System Area (0 fixed)	_	ST1PDD						
Bw.0B	System Area (0 fixed)	Э							
Bw.0C	System Area (0 fixed)	0							
Bw.0D	Convert setting request	D1000.D	Ø						
Bw.0E	System Area (0 fixed)	D1000.E	7	STIAD2-V					
Bw.0F	System Area (0 fixed)	D1000.F	7						
Bw.10	System Area (0 fixed)	D1001.0	0						
Bw.11	Convert setting request	D1001.1	8						
Bw.12	CH1 output enable/disable flag	D1001.2	0	STIDA2-V					
Bw.13	CH2 output enable/disable flag	D1001.3	9						
Bw.14	_	_	—						
		to							
Bw.1F	_	D1001.F	_						

6) Bw Bit Output Area

Ew.n Error Clear	Information	Master Station Side Device	Slice No.	Module Name	
Ew.00	Error Clear Request	D1002.0	0		
Ew.01	System Area (0 fixed)	D1002.1	0	ST1H-PB	
Ew.02	System Area (0 fixed)	D1002.2	4		
Ew.03	System Area (0 fixed)	D1002.3	1		
Ew.04	Error Clear Request	D1002.4	0	ST1PSD	
Ew.05	System Area (0 fixed)	D1002.5	2		
Ew.06	Error Clear Request	D1002.6	0	ST1X2-DE1	
Ew.07	System Area (0 fixed)	D1002.7	3		
Ew.08	Error Clear Request	D1002.8	4		
Ew.09	System Area (0 fixed)	D1002.9	4	51112-1E2	
Ew.0A	Error Clear Request	F	ST1PDD		
Ew.0B	System Area (0 fixed)	С			
Ew.0C	Error Clear Request	D1002.C	0		
Ew.0D	System Area (0 fixed)	D1002.D	0		
Ew.0E	System Area (0 fixed)	D1002.E	7	STIADZ-V	
Ew.0F	System Area (0 fixed)	D1002.F	1		
Ew.10	Error Clear Request	D1003.0	0		
Ew.11	System Area (0 fixed)	D1003.1	0		
Ew.12	System Area (0 fixed)	D1003.2	0	STIDAZ-V	
Ew.13	System Area (0 fixed)	9			
Ew.14		_	_		
		to			
Ew.1F		D1003.F	_	_	

7) Ew Error Clear Area

8) Sw System Area

Sw System Area	Information	Master Station Side Device	Slice No.	Module Name
Sw.0	System Area (0 fixed)	D1004	_	

9) Cw Command Execution Area

Cw Command Execution Area	Information	Master Station Side Device	Slice No.	Module Name
Cw.0	Start Slice No. of Execution Target	D1005	_	—
Cw.1	Command No. to be Executed	D1006		_
Cw.2	Argument 1	D1007		_
Cw.3	Argument 2	D1008		_

Ww.n Word Output	Information	Master Station Side Device	Slice No.	Module Name	
Ww.00	System Area (0 fixed)	D1009	6		
Ww.01	System Area (0 fixed)	D1010	O	STIADZ-V	
Ww.02	CH1 digital value setting (Ww.n))	D1011			
Ww.03	CH2 digital value setting (Ww.n+1)	D1012	8	STIDA2-V	

10) Ww Word Output Area

7.1.1 Program example available when auto refresh is used in QJ71PB92D

This section explains a program example available when auto refresh is used in the QJ71PB92D to communicate with the MELSEC-ST system.

The program example in this section is based on the system configuration in Section 7.1.

The command parameters of the ST1AD2-V and ST1DA2-V are assumed to have already been written.

(1) Auto refresh setting

To use auto refresh, setting must be made on GX Configurator-DP. Refer to the GX Configurator-DP Manual for details.

Slav	Slave Parameter Settings 🛛 🗙										
	Model	ST1H-PB				Revision					
	Vendor	MITSUBISHI	ELECTRIC C	ORPOR/	TION	AA					
		,				, 					
	- Slave Pi <u>N</u> ame	roperties			MELSEC-S	r	-				
	F <u>D</u> L Add	lress			1	[0 - 125]					
	▼ <u>W</u> ato	chdog	Watchdog <u>t</u> ir	ne	5	[1 - 65025]	* 10 ms				
	<u>m</u> in T_so	dr			11	[1 - 255]					
	<u>G</u> roup id	entification nur	nber	🗌 Grp '	1 🔲 Grp 2	🗌 Grp 3 🕅	Grp 4				
				🗌 Grp !	5 🕅 Grp 6	🗌 Grp 7 🗌	Grp 8				
	🔽 Activ	/e		🖂 Sync	: (Output)	Freeze (Inp	out)				
(Address	es in MELSEC	CPU Memory								
	Input CPI	U Device	D	-	0	[0 - 12275]	to 12				
	<u>O</u> utput C	PU Device	D	•	1000	[0 - 12275]	to 1012				
	🗆 Swag I/O Bytes in Master										
	OK	Cance	el	De <u>f</u> ault	U	ser Param.	Select Modules				

(2) Program example

 Program example for intelligent function modules (ST1AD2-V, ST1DA2-V)

Error han	dling										
	мо — —		D2. 0					[SET	M100	3	ST1H-PB error handling start
		<u>D1.00</u>	D2. 1								
			Er.01 D2. 2								
			D2. 3								
			Er.03	J							ST1DSD ovtorpol
			D2. 4					[SET	M110	J	AUX. power supply error handling start
			D2.6	1				[SET	M120	3	ST1X2-DE1 error
			<u>Er.06</u> D2. 7								handling start
			Er.07 D2. 8					_			ST1Y2-TE2 error
			Er.08 D2 9					LSET	M130	ľ	handling start
			Er.09	J							
								[SET	M140	3	AUX. power supply
				D2. D				F SET	M150	٦	ST1AD2-V error
			Br.0C	Er.0D D2. F				-		-	handling start
				111 Er.0F D2. D	D2. C						
				Er.0D		ST1AD2-V CI	H1 warning	handlin	g		
						ST1AD2-V CI	H1 system	error ha	ndling	\neg	
				D2. F	D2. E	ST1AD2-V CI	H2 warning	handlin	g	_	
				Er.0F	D2. E	ST1AD2-V CI	H2 system	error ha	ndling		
			D1. 0	D3. 1	Er.0E			Form			ST1DA2-V error
			Br.10	11 Er.11 D3. 3				T2E1	MIGU	1	handling start
				Er.13							
					D3. 0	ST1DA2-V CI	H1 warning	handlin	g	_	
						ST1DA2-V CI	H1 system	error ha	ndling	_	
				D3. 3	D3. 2	ST1DA2-V CI	H2 warning	, handlin			
				Er.13	Er.12 D3. 2		H2 system	orror bo	ndling		
					Er.12	 STIDAZ-V CI	i iz systeill	en or na	nunny		

(b) Program example used when modules result in errors

ror code read M100 M110 M120 M120 M130 M130 M140 M150 M160										[SET	M300]	Execution of command (error code read request)
MO	M300 	D0. 0	D1000. 3	D0. 3	M100				[MOVP	ко	D1005]	Executes command to ST1H-PB.
		<u>D1.00</u>	[Dw.00]	<u>[]]</u>	M100	M110			[movp	K2	D1005]	Executes command to ST1PSD.
					M100	M110	M120		[MOVP	К3	D1005]	Executes command to ST1X2-DE1.
					M100	M110	M120	M130	[MOVP	K4	D1005]	Executes command
					M100	M110	M120	M130	M140		—ко	\rightarrow	
					M100	M110	M120	M130	M140	M150	—K 1	\rightarrow	
					M100	M110	M120	M130	M140	M150	—K2	÷	
									[MOVP	H101	D1006]	Cw.1 Command No. to be Executed
									[movp	ко	D1007]	Cw.2 Argument 1
									[movp	ко	D1008]	Cw.3 Argument 2
										-[SET	D1000.	3]	Turns ON <u>Bw.03</u> Command Execution
-K0 →									[MOVP	K5	D1005	,]	Executes command to ST1PDD.
-K1 →									[MOVP	K6	D1005]	Executes command to ST1AD2-V.
-K2 →	M160 ─┤								[MOVP	K8	D1005]	Executes command to ST1DA2-V.

MELSEC-ST

(c) Error clear program for modules

7.1.2 Program example available when auto refresh is not used in QJ71PB92D

This section explains a program example available when auto refresh is not used in the QJ71PB92D to communicate with the MELSEC-ST system.

The program example in this section is based on the system configuration in Section 7.1.

The command parameters of the ST1AD2-V and ST1DA2-V are assumed to have already been written.

X1B →	×1D ──┤					[тор	HO	K960	KO	K13	3	Writes initial output data of FDL address 1.
хо — I	X1F	X1B ──┤	Ĭ X1D 							—_ С ХО —_ С МО	כ כ	PROFIBUS-DP exchange start processing
мо — —							—[BMOV	UO\ GO	DO	K13	3	Read from input area
		Con	trol prog	rams for s	slice modules	s (Refer to	Section)		• — — ,	
		Program	used wł	nen modul	les result in e	errors (Ref	er to Sec	tion 7.1.	1 (b))			
		Er	ror clear	program	for modules	(Refer to S	Section 7.	1.1 (c))				
MO 	D0. 0						[BMOV	D1000	UO \ G960	K13	 נ נ	Write to output area
	X1B X0 M0 1	X1B X1D X0 X1F M0 1 M0 1 M0 M0 M0 D0.0 Br.0	XIB X1D X20 I I I M0 I I M0 I I Program Eri M0 D0.0 I I	XIB X1D X20 X0 Y0 Y0 Y0 X0 X1F X1B X1D M0 I I I M0 I I I Program used wh Error clear M0 D0.0 I I	XIB XID X20 X0 Y0 Y0 Y0 X0 XIF XIB XID M0 I I I M0 I I I Program used when modul I I Error clear program I I I	XIB XID X0 Y0 Y0 Y0 Y1F X0 XIF XIF XIB M0 I Control programs for slice modules Program used when modules result in a Error clear program for modules M0 D0.0 I	XIB XID X20 X0 Y0 I Y0 I X0 XIF XIB XID M0 I I I M0 I I I Program used when modules result in errors (Ref I I Error clear program for modules (Refer to S I I M0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	XIB XID X20 X0 [TOP H0 Y0 Y0 [TOP H0 [TOP H0 X0 XIF XIB XID [BMOV M0	XIB XID X20 X0 TOP H0 K960 X0 XIF XIB XID	X1B X1D X20 X0 [TDP H0 K960 K0 X0 X1F X1B X1D [DN0V 00\ 00 M0	X1B X1D X20 X0	X1B X1D X20 X0

7.2 When Using AJ71PB92D/A1SJ71PB92D as Master Station

This section explains a program example available when the AJ71PB92D/A1SJ71PB92D is used as the master station.

This section provides the program example available when the A1SJ71PB92D is used as the master station.

The command parameters of the ST1AD2-V and ST1DA2-V are assumed to have already been written.

 System configuration of master station (A1SJ71PB92D) The system configuration of the master station (A1SJ71PB92D) used in this section is shown below.

(a) System configuration of master station (A1SJ71PB92D)

- A2USHCPU-S1 A1SJ71PB92D A1SX42
- (b) Settings of master station (A1SJ71PB92D)

Item	Setting				
I/O signals		X/Y000 to X/Y01F			
Operation mode	Extended service mode (MODE E)				
I/O data area (buffer memory) for FDL	Input data	0(0н) to 12(0Cн)			
address 1 (MELSEC-ST system)	Output data	960(3C0н) to 972(3CCн)			

REMARK

The MELSEC-ST system changes in I/O data size depending on the maximum input/output point setting and the number of mounted intelligent function modules. Hence, the master station operation mode is set to the extended service mode (MODE E) variable in data size.

- (2) System configuration of MELSEC-ST system The MELSEC-ST system has the system configuration as described in Section 7.1 (2).
- (3) I/O data assignment The I/O data assignment result is the same as that described in Section 7.1 (3).

(4) Device assignment in program example

The program example in this section uses the following device assignment. (a) Devices used by A1SJ71PB92D

Device	Application	Device	Application
X0	Exchange start end signal	Y0	Exchange start request signal
X0D	Watchdog timer error signal		
X1B	Communication READY signal		_
X1D	Module READY signal		

Device	Application	Device	Application
X20	PROFIBUS-DP exchange start command	MO	Refresh start request
X30	ST1H-PB error clear request signal	M100	ST1H-PB error handling start signal 1
X31	ST1PSD error clear request signal	M101	ST1H-PB error handling start signal 2
X32	ST1X2-DE1 error clear request signal	M110	ST1PSD external AUX. power supply error handling start signal 1
хзз	ST1Y2-TE2 error clear request signal	M111	ST1PSD external AUX. power supply error handling start signal 2
X34	ST1PDD error clear request signal	M120	ST1X2-DE1 error handling start signal 1
X35	ST1AD2-V error clear request signal	M121	ST1X2-DE1 error handling start signal 2
X36	ST1DA2-V error clear request signal	M130	ST1Y2-TE2 error handling start signal 1
X40	Output condition for ST1Y2-TE2 first output point	M131	ST1Y2-TE2 error handling start signal 2
X41	Output condition for ST1Y2-TE2 second output point	M140	ST1PDD external AUX. power supply error handling start signal 1
X42	ST1AD2-V convert setting request condition	M141	ST1PDD external AUX. power supply error handling start signal 2
X43	ST1DA2-V convert setting request condition	M150	ST1AD2-V error handling start signal 1
D100	ST1AD2-V CH1 digital output value read destination	M151	ST1AD2-V error handling start signal 2
D101	ST1AD2-V CH2 digital output value read destination	M160	ST1DA2-V error handling start signal 1
		M161	ST1DA2-V error handling start signal 2
		M200	ST1H-PB error clear signal 1
		M201	ST1H-PB error clear signal 2
		M210	ST1PSD error clear signal 1
		M211	ST1PSD error clear signal 2
		M220	ST1X2-DE1 error clear signal 1
		M221	ST1X2-DE1 error clear signal 2
		M230	ST1Y2-TE2 error clear signal 1
	_	M231	ST1Y2-TE2 error clear signal 2
		M240	ST1PDD error clear signal 1
		M241	ST1PDD error clear signal 2
		M250	ST1AD2-V error clear signal 1
		M251	ST1AD2-V error clear signal 2
		M260	ST1DA2-V error clear signal 1
		M261	ST1DA2-V error clear signal 2
		M300	Command execution start flag
		M301	Processing flag for normal command execution result

(b) Devices used by user

Br.n Bit Input	Information	Master Station Side Device	Slice No.	Module Name
Br.00	Module READY	В0	0	
Br.01	Forced output test mode	B1	0	
Br.02	Module being changed online	B2	4	511H-PB
Br.03	Command execution	В3	1	
Br.04		B4	0	
Br.05	External power supply status	B5	2	STIPSD
Br.06	Input status (first point)	B6	0	
Br.07	Input status (second point)	B7	3	STIX2-DE1
Br.08	System Area (0 fixed)	B8		ST1Y2-TE2
Br.09	System Area (0 fixed)	В9	4	
Br.0A		BA	5	ST1PDD
Br.0B	External AUX. power supply status	BB		
Br.0C	Module READY	BC		
Br.0D	Convert setting completed flag	BD	6	
Br.0E	A/D conversion completed flag	BE	_	STIAD2-V
Br.0F	Alarm output signal	BF	1	
Br.10	Module READY	B10		
Br.11	Convert setting completed flag	B11	8	
Br.12	System Area (0 fixed)	B12		STIDA2-V
Br.13	System Area (0 fixed)	B13	9	
Br.14	_	B14	_	—
		to		
Br.1F	_	B1F	_	

(c) Devices used by I/O data1) Br Bit Input Area

Er.n Error Information	Information	Master Station Side Device	Slice No.	Module Name		
Er.00		B20	0			
Er.01	Llood modulo arror information	B21	0			
Er.02		B22	4	5110-60		
Er.03		B23	Ĩ			
Er.04	Bus refreshing module error	B24	0			
Er.05	information	B25	Z	511250		
Er.06		B26	0			
Er.07	Module error information	B27	3	STIX2-DET		
Er.08	Module error information	B28	4	ST1Y2-TE2		
Er.09		B29				
Er.0A	Power feeding module error	B2A	5	ST1PDD		
Er.0B		B2B				
Er.0C		B2C	6			
Er.0D	CH1 error information	B2D				
Er.0E		B2E	7	STIADZ-V		
Er.0F	CH2 error information	B2F	1			
Er.10		B30	0			
Er.11	CH1 error information	B31	8			
Er.12		B32	0	STIDAZ-V		
Er.13	CH2 error information	B33	9			
Er.14	_	B34	_			
	to					
Er.1F	_	B3F	_			

2) Er Error Information Area

Mr.n Module Status	Information	Master Station Side Device	Slice No.	Module Name
Mr.0		B40	0	
Mr.1	lead module status	B41	1	ST1H-PB
Mr.2	Bus refreshing module status	B42	2	ST1PSD
Mr.3	ST1X2-DE1 module status	B43	3	ST1X2-DE1
Mr.4	ST1Y2-TE2 module status	B44	4	ST1Y2-TE2
Mr.5	Power feeding module status	B45	5	ST1PDD
Mr.6		B46	6	ST1AD2-V
Mr.7	STIADZ-V module status	B47	7	
Mr.8		B48	8	
Mr.9	STIDAZ-V module status	B49	9	STIDAZ-V
Mr.10		B4A	_	_
		to		
Mr.15		B4F		_

3) Mr Module Status Area

4) Cr Command Result Area

Cr Command Result Area	Information	Master Station Side Device	Slice No.	Module Name
Cr.0	Cr.0(15-8) Command Execution Result, Cr.0(7-0) Start Slice No. of Execution Target	WO	_	_
Cr.1	Executed Command No.	W1		_
Cr.2	Response Data 1	W2		—
Cr.3	Response Data 2	W3		_

5) Wr Word Input Area

Wr.n Word	Information	Master Station Side Device	Slice No.	Module Name
Wr.00	CH1 Digital Output Value (Wr.n)	W4	0	
Wr.01	CH2 Digital Output Value (Wr.n+1))	W5	6	STIADZ-V
Wr.02	CH1 Digital Value (Wr.n)	W6		
Wr.03	CH2 Digital Value (Wr.n+1)	W7	8	ST1DA2-V

Bw.n Bit Output	Information	Master Station Side Device	Slice No.	Module Name		
Bw.00	System Area (0 fixed)	B1000	0			
Bw.01	System Area (0 fixed)	B1001	0			
Bw.02	System Area (0 fixed)	B1002		511H-PB		
Bw.03	Command request	B1003	1			
Bw.04	System Area (0 fixed)	B1004	0			
Bw.05	System Area (0 fixed)	B1005	2	STIPSD		
Bw.06	System Area (0 fixed)	B1006	0			
Bw.07	System Area (0 fixed)	B1007	3	ST1X2-DE1		
Bw.08	Output status (first point)	B1008	4	ST1Y2-TE2		
Bw.09	Output status (second point)	B1009				
Bw.0A	System Area (0 fixed)	B100A	5	ST1PDD		
Bw.0B	System Area (0 fixed)	B100B				
Bw.0C	System Area (0 fixed)	B100C	0			
Bw.0D	Convert setting request	B100D	6			
Bw.0E	System Area (0 fixed)	B100E	-	STIAD2-V		
Bw.0F	System Area (0 fixed)	B100F	7			
Bw.10	System Area (0 fixed)	B1010	0			
Bw.11	Convert setting request	B1011	8			
Bw.12	CH1 output enable/disable flag	B1012		STIDA2-V		
Bw.13	CH2 output enable/disable flag	B1013	9			
Bw.14	_	B1014	_	_		
	to					
Bw.1F	_	B101F	_			

6) Bw Bit Output Area

Ew.n Error Clear	Information	Master Station Side Device	Slice No.	Module Name
Ew.00	Error Clear Request	B1020	0	07/11/00
Ew.01	System Area (0 fixed)	B1021	0	
Ew.02	System Area (0 fixed)	B1022	1	511H-PB
Ew.03	System Area (0 fixed)	B1023	1	
Ew.04	Error Clear Request	B1024	2	074000
Ew.05	System Area (0 fixed)	B1025	2	STIPSD
Ew.06	Error Clear Request	B1026	2	
Ew.07	System Area (0 fixed)	B1027	3	ST1X2-DE1
Ew.08	Error Clear Request	B1028	4	ST1Y2-TE2
Ew.09	System Area (0 fixed)	B1029		
Ew.0A	Error Clear Request	B102A	5	ST1PDD
Ew.0B	System Area (0 fixed)	B102B		
Ew.0C	Error Clear Request	B102C	0	
Ew.0D	System Area (0 fixed)	B102D	0	
Ew.0E	System Area (0 fixed)	B102E	7	STIADZ-V
Ew.0F	System Area (0 fixed)	B102F	1	
Ew.10	Error Clear Request	B1030	0	
Ew.11	System Area (0 fixed)	B1031	8	
Ew.12	System Area (0 fixed)	B1032	0	STIDAZ-V
Ew.13	System Area (0 fixed)	B1033	55	
Ew.14	_	B1034		_
		to		
Ew.1F	_	B103F	_	_

7) Ew Error Clear Area

8) Sw System Area

Sw System Area	Information	Master Station Side Device	Slice No.	Module Name
Sw.0	System Area (0 fixed)	B1040 to B104F	_	_

9) Cw Command Execution Area

Cw Command Execution Area	Information	Master Station Side Device	Slice No.	Module Name
Cw.0	Start Slice No. of Execution Target	W1000		_
Cw.1	Command No. to be Executed	W1001		_
Cw.2	Argument 1	W1002	_	_
Cw.3	Argument 2	W1003		_

Ww.n Word Output	Information	Master Station Side Device	Slice No.	Module Name
Ww.00	System Area (0 fixed)	W1004	6	
Ww.01	System Area (0 fixed)	W1005	0	STIADZ-V
Ww.02	CH1 digital value setting (Ww.n))	W1006		ST1DA2-V
Ww.03	CH2 digital value setting (Ww.n+1)	W1007	8	

10) Ww Word Output Area

(a) Control program examples for slice modules 1) Program example for input module (ST1X2-DE1) and output module (ST1Y2-TE2)

Output processing to ST1Y2-TE2 first output point Output processing to

ST1Y2-TE2 second output point

 Program example for intelligent function modules (ST1AD2-V, ST1DA2-V)

(b) Program example used when modules result in errors

7 PROGRAMMING

MELSEC-ST

(c) Error clear program for modules

8 COMMANDS

This chapter explains the commands executed in the head module and slice modules.

8.1 Command Overview

By sending a command from the master station to the head module, the operating status or error code of the head module can be read and the command parameters of the intelligent function module can be set.

(1) Procedure for using command

Use a command in the following procedure.

- 1) Before executing a command, check that the Br.00 Module READY and the operating status of target slice module Br.n are on.
- 2) After confirmation, write the command to the Cw Command execution area of the output image assigned to the head module. *1
- 3) Turn on <u>Bw.03</u> Command request assigned to the <u>Bw</u> Bit output area of the head module.
- 4) The command is executed in the head module and/or corresponding module.
- 5) The command execution result is stored into the Cr Command Result Area, and Br.03 Command Execution assigned to the Br Bit Input Area of the head module is turned ON.
- 6) Read the result stored in the Cr Command result area.
- 7) After reading the result from the Cr Command result area, turn off Bw.03 Command request.
- 8) When Bw.03 Command request is turned off, Br.03 Command execution turns off and the contents of the Cr Command result area all turn to 0 automatically.
- *1: When the command to be executed is the same as the previous one, it is not necessary to write the command information to the Cw Command execution area again.
8 COMMANDS

< Cw Command execution area>

b15	b0
Cw.0 Start slice No. of execution target	
Cw.1 Command No. to be executed	
Cw.2 Argument 1	
Cw.3 Argument 2	

Processing of

Processing of

Command 2

Command 1

(2) Precautions for command execution

- (a) When the head module is in the self-diagnostics operation mode, the command cannot be executed for the corresponding module.
- (b) When a slice module is being replaced online (when the REL. LED is on), the command cannot be executed for the slice module.
- (c) While a command is being executed, other command is not executable. Also, a command can be executed for only one module. When executing the same command for multiple modules or executing several kinds of commands, provide an interlock in the program using Br.03 Command execution and Bw.03 Command request as shown below.

<Example>

Executing 2 commands (Commands 1 and 2) consecutively

- 1) Confirm that Br.03 Command execution and Bw.03 Command request are off. (Interlock for other commands)
- 2) Write the command information of Command 1 to Cw Command execution area.
- 3) Turn on Bw.03 Command request.
- 4) After Br.03 Command execution turns on, read the result of Command 1 from Cr Command result area.
- 5) Turn off Bw.03 Command request.
- 6) Confirm that Br.03 Command execution and Bw.03 Command request are off. (Interlock for other commands)
- 7) Write the command information of Command 2 to Cw Command execution area.
- 8) Turn on Bw.03 Command request.
- After Br.03 Command execution turns on, read the result of Command 2 from Cr Command result area.
- 10)Turn off Bw.03 Command request.

If a command is executed without any interlock, the following status will be generated.

- 1) When turning off <u>Bw.03</u> Command request before completion of the command:
 - Br.03 Command execution does not turn on.
 - The command result is not stored in Cr Command result area.
 - The command requested once may be executed.
- 2) When executing a command inadvertently during execution of other command:

The command is executed based on the information written in <u>Cw</u> Command execution area at the time that <u>Bw.03</u> Command request turns on.

8.2 Commands

This section explains the commands for the head module, power distribution module and I/O modules.

(1) Command list

The following table lists the commands that can be sent from the master station.

Command No.	Command name/classification	Description	Target module	Reference section
0100н	Operating status read request	Reads the operating status of the head module and each slice module.	Head module Bus refreshing module Power feeding module Input module Output module Intelligent function module	Section 8.2.1 *1
0101н	Error code read request	Reads the error code of the head module and each slice module.	Head module Bus refreshing module Power feeding module Input module Output module Intelligent function module	Section 8.2.2 *1
0102н	Error history read request	Reads the error history of the head module.	Head module	Section 8.2.3
1000н to 1□□□н	Intelligent function module parameter read command	Reads the parameters set to the intelligent function module.	Intelligent function module	*1
2000н to 2□□□н	Intelligent function module parameter write command	Writes the parameters to be set to the intelligent function module.	Intelligent function module	*1
3000н to 3□□□н	Intelligent function module control command	Controls the intelligent function module.	Intelligent function module	*1

*1: For the commands for the intelligent function module, refer to the manual of the intelligent function module.

(2) How to use the manual

The following shows how to use the manual between Section 8.2.1 and Section 8.2.3.

8.2.1 Operating status read request (Command No.: 0100H)

Reads the operating status of the head module, power distribution module or I/O module.

(1) Values set to Cw Command execution area

The same values must be writhen for the head module, power distribution module or I/O module except for $\boxed{Cw.0}$.

Cw Command execution area	Set value
Cw.0	Set the start slice No. of the module for which the command will be executed. (Hexadecimal)
Cw.1	0100н
Cw.2	
Cw.3	UUUUH fixed (Any other value is ignored.)

(2) Execution result of Cr Command result area

The command result area status differs depending on the result (normally terminated or abnormally terminated) in the Cr.0(15-8) Command Execution Result.

- (a) When the command is executed for the head module
 - 1) When the command is normally terminated (When Cr.0(15-8)) Command execution result is 00_{H})

Cr Command result area	Result
Cr.0	Stores the command execution result into the high byte, and the start slice No. of execution target into the low byte in hexadecimal as shown below. b15 to b8 b7 to b0 Cr.0(15-8) Command execution result Cr.0(7-0) Start slice No. of execution target 00H: Normally terminated 00H: Head module's start slice No.
Cr.1	Stores the executed command No. (0100н). (Hexadecimal)
Cr.2	Stores the LED statuses of the head module into the high byte, and the setting status of the maximum input/output points into the low byte. b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 ERR. REL. DIA BF 0 0 SYN. FRE. 0 0 0 0 2566 128 64- 32- point point point point point point point mode mode mode mode mode mode mode mode
Cr.3	Stores the settings of the head module's user parameters. b15 to b5 b4 b3 b2 b1 b0 0 5) 4) 3) 2) 1) 1) Output status at module error 4) Swap of Ext_Diag Information 0: Disable 1: Continue 1: Enable 2) Ext_Diag Information 5) Consistency Function 0: Disable 0: Disable 1: Enable 1: Enable 3) Swap of Input/Output Data 0: Disable 1: Enable 1: Enable

2) When the command is abnormally terminated (When Cr.0(15-8)Command execution result is other than 00_H)

Cr Command result area	Result		
Cr.0	Stores the command execution result into the high byte, and the start slice No. of execution target into the low byte in hexadecimal as shown below. b15 to b8 b7 to b0 Cr.0(15-8) Command execution result Cr.0(7-0) Start slice No. of execution target → Other than 00 _H : Abnormally terminated (Refer to Section 8.4)		
Cr.1	Stores the executed command No. (0100H). (Hexadecimal)		
Cr.2	Stores the Cw.2 Argument 1 at command execution.		
Cr.3	Stores the Cw.3 Argument 2 at command execution.		

(b) When the command is executed for the power distribution module or I/O module

1) When the command is normally terminated (When Cr.0(15-8)) Command execution result is 00_H)

Cr Command result area	Result				
	Stores the command execution result into the high byte, and the start slice No. of execution target into				
	the low byte in hexadecimal as shown below.				
	b15 to b8 b7 to b0				
Cr.0	Cr.0(15-8) Command execution result Cr.0(7-0) Start slice No. of execution target				
	→ 00 _H : Normally terminated				
Cr.1	Stores the executed command No. (0100н). (Hexadecimal)				
	Stores the operating status of the slice module for which the command was executed.				
	Stores a minor error into the high byte, and a major error into the low byte.				
	<for input="" module=""></for>				
	b15 to b8 b7 to b1 b0				
	0 0 1)				
	1) 0: Normal 1: Hardware fault				
	<for module="" output=""></for>				
	b15 to b9 b8 b7 to b2 b1 b0				
	0 3) 0 2) 1)				
	1) 0: Normal 3) 0: Protective function 1: Hardware fault inactive/not provided				
	2) 0: Fuse not blown 1: Protective function active 1: Fuse blown				
Cr.2	<for bus="" module="" refreshing=""></for>				
	b15 to b10 b9 b8 b7 to b1 b0				
	0 3) 2) 0 1)				
	1) 0: Normal 3) 0: External AUX. power				
	1: Hardware fault supply normal				
	2) 0: External SYS. power Supply low				
	1: External SYS. power supply low				
	<for feeding="" module="" power=""></for>				
	b15 to $b10$ b9 b8 b7 to $b1$ b0				
	1: Hardware fault supply normal				
	1: External AUX. power				
	suppiy iow				

(To next page)

Cr Command result area	Result		
	Stores the user parameter settings of the slice module for which the command was executed.		
	<for input="" module=""></for>		
	b15 to b3 b2 to b0		
	0 1)		
	1) Filter constant 0⊦: 1.5ms 1⊦: 0.5ms		
	<for module="" output=""></for>		
Cr.3	b15 to b4 b3 b2 b1 b0		
	0 1) 1 1 1		
	 Output status Clear/Hold setting CLEAR HOLD 		
	<for bus="" feeding="" module="" module,="" power="" refreshing=""></for>		
	_b15 to b0		
	0		

2) When the command is abnormally terminated (When Cr.0(15-8)) Command execution result is other than 00_H)

Cr Command result area	Result			
	Stores the command execution the low byte in hexadecimal as	n result into the high by s shown below.	rte, and the start slice	No. of execution target into
	b15 to	b8 b7	to	b0
Cr.0	Cr.0(15-8) Command exec	ution result Cr.0(7-0)	Start slice No. of executi	on target *1
	→ Other t	than 00⊦: Abnormally t	erminated (Refer to S	Section 8.4)
	*1: When 0Fн is stored into t	he Cr.0(15-8) Comma	and Execution Result,	00н (start slice No. of head
	module) is stored into the Cr.0(7-0) Start Slice No. of Execution Target.			
Cr.1	Stores the executed command No. (0100H). (Hexadecimal)			
Cr.2	Stores the Cw.2 Argument 1	at command execution	۱.	
Cr.3	Stores the Cw.3 Argument 2	at command execution	1.	

8.2.2 Error code read request (Command No.: 0101H)

Reads the error code of the head module, power distribution module or I/O module.

(1) Values set to Cw Command execution area

The same values must be written for the head module, power distribution module or I/O module except for $\boxed{Cw.0}$.

Cw Command execution area	Set value
Cw.0	Set the start slice No. of the module for which the command will be executed. (Hexadecimal)
Cw.1	0101н
Cw.2	
Cw.3	UUUUH fixed (Any other value is ignored.)

(2) Execution result of Cr Command result area

The command result area status differs depending on the result (normally terminated or abnormally terminated) in the Cr.0(15-8) Command Execution Result.

- (a) When the command is executed for the head module
 - 1) When the command is normally terminated (When Cr.0(15-8)) Command execution result is 00_H)

Cr Command result area	Result		
	Stores the command execution result into the high byte, and the start slice No. of execution target into the low byte in hexadecimal as shown below.		
	b15 to b8 b7 to b0		
Cr.0	Cr.0(15-8) Command execution result Cr.0(7-0) Start slice No. of execution target		
	→ 00 _H : Normally terminated → 00 _H : Head module's start slice No.		
Cr.1	Stores the executed command No. (0101H). (Hexadecimal)		
	Stores the error code of the error currently occurring in the head module. (Hexadecimal)		
Cr.2	0000н is stored when the module is normal.		
	Refer to Section 9.2.2 for details of the error code.		
Cr.3	0000н		

2) When the command is abnormally terminated (When Cr.0(15-8)) Command execution result is other than 00_{H})

Cr Command result area	Result			
Cr.0	Stores the command execution result into the high byte, and the start slice No. of execution target into the low byte in hexadecimal as shown below. b15 to b8 b7 to b0 Cr.0(15-8) Command execution result Cr.0(7-0) Start slice No. of execution target			
	terminated (Re	fer to Section 8.4)		
Cr.1	Stores the executed command No. (0101н). (Hexadecimal)			
Cr.2	Stores the Cw.2 Argument 1 at command execution.			
Cr.3	Stores the Cw.3 Argument 2 at command execution.			

- (b) When the command is executed for the power distribution module or I/O module
 - 1) When the command is normally terminated (When Cr.0(15-8)) Command execution result is 00_{H})

Cr Command result area	Result				
	Stores the command execution result into the high byte, and the start slice No. of execution target into the low byte in hexadecimal as shown below.				
Cr.0	b15 to b8 b7 to b0 Cr 0(15-8) Command execution result $Cr 0(7-0)$ Start slice No of execution target				
Cr 1	Charge the evented command No. (01011). (Levedecime)				
01.1	Stores the operating status of the slice module for which the command was executed				
	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>				
	b15 to b8 b7 to b1 b0				
	0 0 1)				
	1) 0: Normal 1: Hardware fault				
	<for module="" output=""></for>				
	b15 to b9 b8 b7 to b2 b1 b0				
	0 3) 0 2) 1)				
	1) 0: Normal3) 0: Protective function1: Hardware faultinactive/not provided2) 0: Fuse not blown1: Protective function1: Fuse blownactive				
Cr.2	<for bus="" module="" refreshing=""></for>				
	b15 to b10 b9 b8 b7 to b1 b0				
	0 3) 2) 0 1) 1) 0: Normal 3) 0: External AUX. power 1: Hardware fault 3) 0: External AUX. power 2) 0: External SYS. power 1: 1: External SYS. power supply low 1: External SYS. power supply low				
	<for feeding="" module="" power=""></for>				
	b15 to b10 b9 b8 b7 to b1 b0				
	0 2) 0 0 1)				
	1) 0: Normal 2) 0: External AUX. power 1: Hardware fault supply normal 1: External AUX. power supply low				
Cr.3	0000н				

2) When the command is abnormally terminated (When Cr.0(15-8)) Command execution result is other than 00_H)

Cr Command result area	Result						
	Stores the command execution result into the high byte, and the start slice No. of execution target into the low byte in hexadecimal as shown below.						
	b15 to b8 b7 to b0						
Cr.0	Cr.0(15-8) Command execution result Cr.0(7-0) Start slice No. of execution target *1						
	→ Other than 00H: Abnormally terminated (Refer to Section 8.4)						
	*1: When 0FH is stored into the Cr.0(15-8) Command Execution Result, 00H (start slice No. of head						
	module) is stored into the Cr.0(7-0) Start Slice No. of Execution Target.						
Cr.1	Stores the executed command No. (0101н). (Hexadecimal)						
Cr.2	Stores the Cw.2 Argument 1 at command execution. Stores the Cw.3 Argument 2 at command execution.						
Cr.3							

8.2.3 Error history read request (Command No.: 0102H)

Reads the error history of the head module.

(1) Values set to Cw Command execution area

Cw Command execution area	Set value
Cw.0	Set the start slice No. (0000H) of the head module. (Hexadecimal)
Cw.1	0102н
Cw.2	
Cw.3	UUUU H fixed (Entry of any other value will result in an effor.)

(2) Execution result of Cr Command result area

The command result area status differs depending on the result (normally terminated or abnormally terminated) in the Cr.0(15-8) Command Execution Result.

(a) When the command is normally terminated (When Cr.0(15-8)) Command execution result is 00_{H})

Cr Command result area	Result						
	Stores the command execution result into the high byte, and the start slice No. of execution target into the low byte in hexadecimal as shown below.						
Cr.0	b15 to b8 b7 to b0						
	Cr.0(15-8) Command execution result Cr.0(7-0) Start slice No. of execution target						
	→ 00 _H : Normally terminated → 00 _H : Head module's start slice No.						
Cr.1	Stores the executed command No. (0102н). (Hexadecimal)						
Cr.2	Stores the error code of the latest error that occurred in the head module. (Hexadecimal) 1000 H is stored when the module is normal. Refer to Section 9.2.2 for details of the error code.						
Cr.3	Stores the error code of the second error from the last that occurred in the head module. (Hexadecime Refer to Section 9.2.2 for details of the error code.						

(b) When the command is abnormally terminated (When Cr.0(15-8)) Command execution result is other than 00_{H})

Cr Command result area	Result					
	Stores the command execution result into the high byte, and the start slice No. of execution target into the low byte in hexadecimal as shown below.					
	b15 to b8 b7 to b0					
Cr.0	Cr.0(15-8) Command execution result Cr.0(7-0) Start slice No. of execution target					
	→ Other than 00H: Abnormally terminated (Refer to Section 8.4)					
Cr.1	Stores the executed command No. (0102 H). (Hexadecimal)					
Cr.2	Stores the Cw.2 Argument 1 at command execution.					
Cr.3	Stores the Cw.3 Argument 2 at command execution.					

8.3 Program Examples

Program examples for commands are shown here.

The program example in this section is based on the system configuration in Section 7.1.

In this program example, the operation status read request (command No.: 0100_H) is executed for the head module (start slice No.: 0) without use of auto refresh in the QJ71PB92D.

(1) Device assignment in program example

The program example in this section uses the following device assignment.(a) Devices used by user

Device	Application	Device	Application
X50	Command execution start request signal	MO	Refresh start request
	_	M300	Command execution start flag at error occurrence (Refer to Section 7.1)
		M400	Command execution start flag

(b) Devices used in I/O data

The devices used in the I/O data are the same as those given in Section 7.1 (4).

(2) Program example

8.4 Values Stored into Command Execution Result

The following table describes the values stored into the Cr.0(15-8) Command execution result of the Cr Command result area.

Cr.0(15-8) Command	Departmen	Corrective action
execution result	Description	Corrective action
00н	Normally terminated	
	The resultated command is not available for the	Check whether the request command is available for the
01н	The requested command is not available for the	module specified by the Cw.0 Start Slice No. of
	specified module.	Execution Target.
		Check whether the value set in Cw.2 Argument 1 or
02н	The value set in <u>Cw.2</u> Argument Tor <u>Cw.3</u>	Cw.3 Argument 2 of the Cw Command execution area
	Argument 2 is outside the range.	is within the range available for the requested command.
		Check whether the corresponding module is mounted at
0011	The Cw.0 Start Slice No. of Execution Target is	the Cw.0 Start Slice No. of Execution Target.
03H	wrong.	Check whether Cw.0 Start Slice No. of Execution Target
	-	is the start slice No. of the corresponding module.
		Check whether the intelligent function module specified
		by the Cw.0 Start Slice No. of Execution Target can use
		the requested command.
04н	There is no response from the specified module.	When the requested command can be used, the possible
		cause is an intelligent function module failure.
		Please consult your local Mitsubishi representative,
		explaining a detailed description of the problem.
	No communication is available with the specified	The possible cause is a slice module failure.
05н		Please consult your local Mitsubishi representative,
	module.	explaining a detailed description of the problem.
	The requested command is not executable in the	Check the operating status of the head module or
06н	current operating status (operation mode) of the	intelligent function module, and change the operating
	module.	status so that the requested command can be executed.
		The operation mode of the intelligent function module
070	The module has already been in the energiand mode	specified by the Cw.0 Start Slice No. of Execution
U/H	The module has already been in the specified mode.	Target is already in the requested mode. Continue the
		specified operation mode.
		Check the operation mode of the intelligent function
00.0	The module cannot be changed into the specified	module specified by the Cw.0 Start Slice No. of
USH	mode.	Execution Target, and change the status so that the mode
		can be set to the requested one.
000	The specified module is in the online module change	Execute the command after online module change is
USH	status.	completed.
054	The value of Cw.0 Start Slice No. of Execution	Check whether the value set at Cw.0 Start Slice No. of
UFH	Target is outside the applicable range.	Execution Target is within 7FH.
		Execute the command again.
10н	Parameters cannot be read from the specified module.	If the problem still persists, the possible cause is an
		intelligent function module failure.
11н	Parameters cannot be written to the specified module.	Please consult your local Mitsubishi representative,
• • • •		explaining a detailed description of the problem.
100	The specified module is not in the status available for	
13H	parameter writing.	Enable parameter writing.

MEMO

9 TROUBLESHOOTING

This chapter explains corrective actions to be taken and the error codes displayed when problems occur in the head module.

Before starting the troubleshooting in any of Section 9.1 to 9.3, check whether the MELSEC-ST system is configured correctly.

The following provides the items for checking whether the MELSEC-ST system is configured correctly.

- Check that a proper number of slice modules are mounted. Check whether 63 or less slice modules are used with the head module. When intelligent function modules are mounted, check whether the number of the intelligent function modules is 26 or less.
 If the range is exceeded, the RUN LEDs of invalid slice modules are off.
- (2) Check that total number of occupied I/O points is within 256. Check whether the total number of occupied I/O points of the modules comprising the MELSEC-ST system is 256 or less. If the range is exceeded, the RUN LEDs of invalid slice modules are off. For details, refer to Section 6.1.
- (3) Check that slice modules are mounted on base modules Before switching on the external power supplies of the MELSEC-ST system, check whether slice modules are mounted on all base modules.
- (4) Check the combination of slice modules and base modules. Check whether the slice modules are mounted on the applicable base modules. For details of the applicable base modules, refer to the corresponding slice module manual.
- (5) Check that the total slot width of slice modules is within 85cm. Check whether the total slot width of the slice modules (without the head module) comprising the MELSEC-ST system is within 85cm. For details, refer to the MELSEC-ST System User's Manual.
- (6) Check that the total 5V DC internal current consumption and total 24V DC current are within the capacity of the power distribution modules.
 Calculate the total 5V DC internal current consumption and total 24V DC current,

and check whether they are within the capacity of the power distribution modules. For the calculation, refer to the MELSEC-ST System User's Manual.

9.1 When I/O data cannot be communicated

When I/O data cannot be communicated between the master station and MELSEC-ST system, troubleshoot the problem according to the following flowchart.

9.1.1 When RUN LED is off

When the RUN LED of the head module is off, troubleshoot the problem according to the following flowchart.

9.1.2 When BF LED is on

When the BF LED of the head module is on, troubleshoot the problem according to the following flowchart.

9.1.3 When input data is erroneous

When the input data sent from the head module is erroneous, troubleshoot the problem according to the following flowchart.

9.1.4 When output data is erroneous

When the output data received by the head module is erroneous, troubleshoot the problem according to the following flowchart.

9.2 When ERR. LED is on or flickering

When an error occurs in the head module, the ERR. LED turns on or flickers. This section explains the read operation of the error code of the head module and lists the error codes.

9.2.1 Error code reading operation

This section explains the operation to read the error code. Refer to Section 9.2.2 for details of the error code.

(1) Error code reading operation

Whether the error code can be read or not depends on the BF LED and IDA LED on/off statuses of the head module.

The following table indicates whether the error code can be read or not for each case.

LED on/off status		Whether error code can be read or not				
BF LED	DIA LED	(a)	(b)	(c)	(d)	
Off	Off	0	×	0	0	
Off	On	0	0	0	0	
On	Off	×	×	×	0	
On	On	×	0	×	0	

 \bigcirc : Can be read \times : Cannot be read

(a) Using input data for checking

Confirm the error definition in the Er.n Error Information of the module whose ERR. LED is on or flickering, and take corrective action. Refer to Section 3.2.3 for details of the Er.n Error Information of the head module.

(b) Using extended diagnostic information for checking

When the extended diagnostic information notification function is enabled in the head module, confirm the error details of the corresponding module in the extended diagnostic information area of the master station, and take corrective action.

Refer to Section 4.2.3 for details of the extended diagnostic information notification function.

(c) Using command for checking

Execute the command (0101H) for the head module from the master station to read the error code of the head module, and take corrective action. Refer to Chapter 8 for details of the command.

(d) Using GX Configurator-ST for checking

- Connect the personal computer to the head module, and confirm the operating status and error code of each module from GX Configurator-ST. Check the operating status and error code of each module on the "System Monitor" and "Module Detail Information" screens of GX Configurator-ST. Refer to the GX Configurator-ST Manual for the operation on the "System Monitor" and "Module Detail Information" screens.
 - 1) "System Monitor" screen

System Monitor	-DX
Module Information Module Name : ST1H-PB Label Name : Base Module :	Select Module Display Position
Communication Status With Master Station Communicating Module Status Module Status Module System Error Module Warning Module Change	B15 B
No. 0 1 2 Module Status Kastel Kast	48.55 56-63 Start

Operating status of each module is displayed.

2) "Module Detail Information" screen (When head module is selected)

Module Detail Information	
Module Detail Information Module Name : STIH-PB Label Name : FDL Address : 1 FDL Address : 1 Version : A A A Maximum Input/Duput Points : 64-pt mode Transmission Speed : 1.5Mbps Current Front/Statua	
No.(HEX) Current Error/Status O000 No error Close Clos	The error code of the —current error occurred in the head module is displayed.
Error/Status Log	
No.(HEX) Error/Status Log C005 IN THE ONLINE MODULE CHANGE The slice module (No. 5) is being replaced. Please follow the correct steps.	The history of errors that
C106 PARAMETER READ ERROR DURING ONLINE CHANGE Parameters could not be read out from the intelligent function module (No.6) during online change. Please write the parameters after online change.	 is displayed.
F200 MODULE ERROR Some of modules can not be recognized. Please check the error module and replace it or its base module.	

9.2.2 Error code list

The following gives the error code list of the head module. Refer to Section 9.2.1 for the error code reading operation.

(1) Error code list

(a) Error codes for PROFIBUS-DP communication

If any of the following errors occurs during online module change, the ERR. LED status change and error code are not recorded.

Error code (Hexadecimal)	Error Level	Error name	ERR. LED status	Detection timing	Description	
В100н	Warning	FDL address setting error			The FDL address is outside the setting range.	
В101н	System error	Hardware fault	On	supply is switched on or head module is reset	A hardware fault occurred.	
В200н	Warning	Network parameter error	On	When communication starts (when parameters are received)	Watchdog time setting is illegal. (1 or less, or more than 65535)	
В300н	Warning	User parameter error			Slave parameter setting error (value is set to the invalid area.)	
В301н					In the Select Modules setting, the head module is not selected as the start module.	
В302н				When communication	Any slave parameter of the head module is illegal.	
В303н	Warning	Configuration error	On	starts (when parameters are received)	The points for the slice modules set in Select Modules exceed the maximum input/output points. (The sum of input/output points is outside the setting range.)	
В304н					The points for the slice modules set in Select Modules exceed the maximum input/output points. (The sum of word input/output points is outside the setting range.)	
B401н to B43Fн *1	Warning	Module select error	On	When communication starts (when parameters are received)	The Select Modules setting and actually mounted slice module differ in module type or input/output points. Any of 1 to 63 (01 _H to $3F_H$) denoting the mounting position of the slice module from the right of the head module is stored into the low byte.	
B501н to B53Fн *1	Warning	Module select error	On	When communication starts (when parameters are received)	The Select Modules setting and actually mounted intelligent function module differ in model name. Any of 1 to 63 (01 _H to 3F _H) denoting the mounting position of the slice module from the right of the head module is stored into the low byte.	
B601н to B63Fн *1	Warning	Module select error	On	When communication starts (when parameters are received)	The Select Modules setting and actually mounted intelligent function module differ in module type or word input/output points. Two or more modules were set to Select Modules. Any of 1 to 63 (01H to 3FH) denoting the mounting position of the slice module from the right of the head module is stored into the low byte.	
Е100н	Warning	Communication error	Flickering	During communication	Communication with master station stopped.	
F200н	System error	Module error	On	Always	There is an unrecognizable slice module.	
F201н	Warning	FDL address change error	Flickering	Always	The FDL address was changed after the head module started.	
F202 _H	System error	Module composition error	On	When external power supply is switched on or head module is reset	The bus refreshing module is not mounted next to the right of the head module.	
F203н	System error	User parameter setting error	On	When communication starts	There is a slice module whose user parameters could not be set.	
F204н ^{* 2}	System error	System power down		Always	An instantaneous power failure occurs in the bus refreshing module that powers the head module (bus refreshing module mounted next to the right of the head module).	
F301н to F33Fн * 1	System error	System power down	_	Always	An error occurred in the bus refreshing module. Any of 1 to 63 (01н to 3Fн) denoting the mounting position of the slice module from the right of the head module is stored into the low byte.	

* 1: The one low byte denotes the mounting position of the slice module from the right of the head module.

<Example> When the bus refreshing module is mounted in the first position: **01H

When the slice module is mounted in the 10th position: **0A H

* 2: If an instantaneous power failure occurs in the bus refreshing module that powers the head module, the error information is recorded in the error history.

Error code	Corrective action				on
(Hexadecimal)	Conective action	1)	2)	3)	4)
В100н	Check whether the FDL address setting switches are set within the range 0 to 99. (Refer to Section 5.3.1.)	×	×	×	0
B101н	 Hardware fault. Replace the head module. Please consult your local Mitsubishi representative, explaining a detailed description of the problem. 	×	×	×	0
В200н	Check the watchdog time setting. (Refer to Section 6.2.)	×	0	×	0
В300н	Check the slave parameters of the head module. (Refer to Chapter 6.)	×	0	×	0
В301н	Set the head module as the start module in Select Modules. (Refer to Section 6.1.1.)	×	0	×	0
В302н	Check the slave parameters of the head module. (Refer to Section 6.2.)	×	0	×	0
В303н	Check the head module setting in Select Modules. (Check whether the sum of input/output points of the modules is within the setting range. Refer to Section 6.1.1.)	×	0	×	0
В304н	Check the head module setting in Select Modules. (Check whether the sum of word input/output points of the intelligent function modules is within the setting range. Refer to Section 6.1.1.)	×	0	×	0
B401н to B43Fн ^{*1}	Check the Select Modules setting.	×	0	×	0
B501н to B53Fн ^{*1}	Check the Select Modules setting.	×	0	×	0
B601н to B63Fн ^{×1}	Check the Select Modules setting.	×	0	×	0
E100н	Check the master station status. Check the network wiring conditions. Increase the watchdog time satting	×	0	×	0
F200н	Change the slice module or base module whose RUN LED is off (the corresponding bit of the Mr Module Status Area is OFF).	0	0	0	0
F201н	 If the FDL address was changed accidentally, return it to the FDL address set at the start of the head module. When it is desired to change the FDL address after the head module started, restart the head module (reset the head module or switch the external power supply off and then on again). 	0	0	0	0
F202 _H	Mount the bus refreshing module next to the right of the head module.	×	0	0	0
F203H	Temporarily stop PROFIBUS-DP communication and restart communication. If the same error occurs after communication restart, replace the slice module whose RUN LED is flickering during communication with the master station.	0	0	0	0
F204н ^{ж 2}	Check whether an instantaneous power failure occurred in the external SYS. power supply that powers the bus refreshing module.	×	0	0	0
F301 _H to F33F _H * ¹	 Check the status of the external SYS. power supply that powers the bus refreshing module. Replace the bus refreshing module. 	×	0	0	0

 \bigcirc : Can be read \times : Cannot be read

Using input data for checking
 Using extended diagnostic information for checking
 Using command for checking
 Using GX Configurator-ST for checking

				5		
Error/Operating status code (Hexadecimal)	Error Level	Error name	ERR. LED status	Detection timing	Description	
C004 to C02E	_	— (Normal)	_	When online module change starts (when REL. LED turns on)	Module being replaced online (changeable) Any of 1 to 63 (01 $_{\rm H}$ to 3F $_{\rm H}$) denoting the mounting position of the slice module from the right of the head module is stored into the low byte.	
С001н to C03Fн * 1				When online module change starts (when REL. LED flickers)	Module being replaced online (intelligent function module parameters being read) Any of 1 to 63 (01H to 3FH) denoting the mounting position of the slice module from the right of the head module is stored into the low byte.	
С101н to С13Fн *1	System error	Online module change error	On ^{* 2}	When module is being changed online (when REL. LED is on)	The parameters of the intelligent function module cannot be read from its ROM. (During online module change) Any of 1 to 63 (01 μ to 3F μ) denoting the mounting position of the slice module from the right of the head module is stored into the low byte.	
				After module is changed online (when REL. LED turns off)	The parameters of the intelligent function module cannot be read from its ROM. (After end of online module change) Any of 1 to 63 (01 μ to 3F μ) denoting the mounting position of the slice module from the right of the head module is stored into the low byte.	
С201н to C23Fн *1	System error	Online module change error	On	When slice module mounting is confirmed (when REL. LED turns on)	The model name of the current slice module differs from that of the previous slice module. Or, the intelligent function module parameters cannot be written to the ROM of the current intelligent function module. Any of 1 to 63 (01 μ to 3F μ) denoting the mounting position of the slice module from the right of the head module is stored into the low byte.	

(b) Operating status code and error codes for online module change

st 1: The one low byte denotes the mounting position of the slice module on the right of the head module.

<Example> When the bus refreshing module is mounted in the first position: ** $\underline{01}_H$

When the slice module is mounted in the 10th position: ** $\underline{0A}_{H}$

* 2: If any of C101H to C13FH occurs, the ERR. LED remains on until the next online module change.

To turn off the ERR. LED, turn on the Ew.00 Error Clear Request after online module change.

(c) Operating status code for forced output test mode

Operating status code (Hexadecimal)	Error Level	Error name	ERR. LED status	Detection timing	Description	
D000н	_	- (Normal)	_	When forced output test mode starts	Forced output test mode being executed	

Error/Operating		Reading operation				
status code (Hexadecimal)	Corrective action	1)	2)	3)	4)	
С001н to C03Fн ^{*1}	Complete online module change. (Refer to Section 4.4.)	0	0	0	0	
С101н to С13Fн ^{* 1}	After online module change, write the parameters to the intelligent function module using a command or GX Configurator-ST, with the RUN LED of the currently mounted module flickering or on.	0	0	0	0	
C201н to C23Fн ^{* 1}	 When the current slice module differs in type from the previous slice module, mount the slice module whose type is the same as that of the previous slice module. When the current slice module is the same in type as the previous slice module, mount the other slice module. 	0	0	0	0	

O: Can be read X: Cannot be read

1) Using input data for checking

2) Using extended diagnostic information for checking

3) Using command for checking

4) Using GX Configurator-ST for checking

	Operating status	Corrective action				Reading operation			
	code					4)			
	(Hexadecimal)					4)			
		Operating status code Corrective action (Hexadecimal) When ending the forced output test mode, perform operation from GX Configurator-ST. (Refer to the GX Configurator-ST Manual.)	0	0	0				
	DUUUH	(Refer to the GX Configurator-ST Manual.)			0				

 $\bigcirc: \textbf{Can be read} \quad \times: \textbf{Cannot be read}$

1) Using input data for checking

2) Using extended diagnostic information for checking

3) Using command for checking

4) Using GX Configurator-ST for checking

(2) When multiple errors are detected simultaneously

When the head module detects multiple errors simultaneously, error information is stored with the following priority.

Priority	Error code	Error name				
1	F204н	System power down				
1	F301н to F33Fн					
2	F202 н	Module composition error				
3	C201н to C23Fн					
4	С301н to С33Fн	Online module change error				
5	С101н to С13Fн					
6	C001н to C03Fн	Module being changed online (normal)				
7	F200н	Module error				
8	F203н	User parameter setting error				
9	F201н	FDL address change error				
10	D000H	Forced output test mode (normal)				
11	Е100н	Communication error				
12	В100н	FDL address setting error				
13	В101н	Hardware fault				
14	В200н	Network parameter error				
15	В300н	User parameter error				
16	B401н to B43Fн	Madula adapt orrer				
17	B501н to B53Fн					
18	B301н					
19	В302н	Configuration error				
20	В303н	Configuration error				
21	В304н					
22	В601н to В63Fн	Module select error				

9.3 When command cannot be executed

When the command from the master station cannot be executed, troubleshoot the problem according to the following flowchart.

APPENDICES

Appendix 1 External Dimensions

(1) Head module (ST1H-PB)

(2) End plate (ST1A-EPL) *1

- *1. In the above drawing, the end bracket is mounted on the end plate.
- (3) End bracket (ST1A-EBR)

Арр

Appendix 2 MELSEC-ST System Setting Sheet

Appendix 2.1 Maximum input/output points setting sheet

No.	Module Name	Number of Occupied I/O Points	Start Slice No. (Number of occupied slices)	Wr.n	Ww.n	5V DC Internal Current Consumption (Total)	24V DC Current (Total)	Slot Width (Total)
0	ST1H-PB	4	0(2)	_	_	0.530A(0.530A)	0A(0A)	_
1	ST1PSD	2	2(1)	_	_	_	_	25.2mm(25.2mm)
2			()					
3			()					
4			()					
5			()					
6			()					
7			()					
8			()					
9			()					
10			()					
11			()					
12			()					
13			()					
14			()					
15			()					
16			()					
17			()					
18			()					
19			()					
20			()					
21			()					
22			()					
23			()					
24	<u> </u>		()					
Tota	al	*1	_	*2	*2	_	_	_

* 1: Apply this value to [A] in the following table.

* 2: Apply the value, whichever is larger, to [D] in the following table.

[A] Sum total of occupied	[D] Maximum word input/output points								
I/O points	0 to 32 words				33 to 52 words				
44.00.14	32-point	64-point	128-point	256-point	32-point	64-point	128-point		
4 to 32 points	mode	mode	mode	mode	mode	mode	mode	—	
		64-point	128-point	256-point		64-point	128-point		
33 to 64 points		mode	mode	mode		mode	mode	—	
	_		128-point	256-point	_		128-point		
65 to 128 points			mode	mode			mode	—	
	_			256-point					
129 to 256 points				mode	—				

Select the shaded setting when planning an expansion of the MELSEC-ST system for the future.

Appendix 2.2 Input data assignment sheet

(1) Br Bit input area

Br.n Bit input	Information	Master station side device	Slice No.	Module name
Br.00	Module READY		0	
Br.01	Forced output test mode		0	
Br.02	Module being changed online		4	31 IN-PD
Br.03	Command execution		I	
Br.04			2	
Br.05			2	511950
Br.06			2	
Br.07			3	
Br.08			4	
Br.09			4	
Br.0A			F	
Br.0B			0	
Br.0C			0	
Br.0D			Ø	
Br.0E			7	
Br.0F			7	

Br.n Bit input	Information	Master station side device	Slice No.	Module name
Br. □0				
Br. □1				
Br. □2				
Br. □3				
Br. □4				
Br. 🗖 5				
Br. □ 6				
Br. □7				
Br. □ 8				
Br. 🗖 9				
Br. □A				
Br. □B				
Br. □C				
Br. 🗖 D				
Br. 🗖 E				
Br. □F				

(2) Er Error information area

Er.n Error information	Information	Master station side device	Slice No.	Module name
Er.00			0	
Er.01	Head module error		0	
Er.02	information		4	51 IN-FD
Er.03			1	
Er.04	Bus refreshing module error		2	
Er.05	information		Z	511PSD
Er.06			2	
Er.07			3	
Er.08			4	
Er.09			4	
Er.0A			F	
Er.0B			0	
Er.0C			0	
Er.0D			Ø	
Er.0E			7	
Er.0F			/	

Er.n Error information	Information	Master station side device	Slice No.	Module name
Er. 🛛 0				
Er. 🛛 1				
Er. □2				
Er. 🛛 3				
Er. □4				
Er. 🛛 5				
Er. □6				
Er. □7				
Er. 🗆 8				
Er. □9				
Er. □A				
Er. □B				
Er. 🗆 C				
Er. 🗖 D				
Er. 🗖 E				
Er. 🗆 F				

(3) Mr Module status area

Mr.n Module status	Information	Master station side device	Slice No.	Module name
Mr. 0			0	
Mr. 1	Head module status		1	STIH-PB
Mr. 2	Bus refreshing module status		2	ST1PSD
Mr. 3			3	
Mr. 4			4	
Mr. 5			5	
Mr. 6			6	
Mr. 7			7	
Mr. 8			8	
Mr. 9			9	
Mr.10			10	
Mr.11			11	
Mr.12			12	
Mr.13			13	
Mr.14			14	
Mr.15			15	
Mr.n Module status	Information	Master station side device	Slice No.	Module name
Mr. □□0				
Mr. □□1				
Mr. □□2				
Mr. □□3				
Mr. □□4				
Mr. □□5				
Mr. □□6				
Mr. 🗆 🗆 7				
Mr. □□8				

Mr. □□9

(4) Wr Word input area

Wr.n Word input	Information	Master station side device	Slice No.	Module name
Wr. 🗆 0				
Wr. 🗖 1				
Wr. □ 2				
Wr. □ 3				
Wr. □4				
Wr. □ 5				
Wr. □ 6				
Wr. □7				
Wr. □ 8				
Wr. □ 9				
Wr. □A				
Wr. □B				
Wr. □C				
Wr. 🗖 D				
Wr. □E				
Wr. 🗆 F				

Appendix 2.3 Output data assignment sheet

(1) Bw Bit output area

Bw.n Bit output	Information	Master station side device	Slice No.	Module name
Bw.00	System area (0 fixed)		0	
Bw.01	System area (0 fixed)		0	
Bw.02	System area (0 fixed)		4	511H-PB
Bw.03	Command request		Ι	
Bw.04	System area (0 fixed)		0	
Bw.05	System area (0 fixed)		2	511250
Bw.06			2	
Bw.07			3	
Bw.08			4	
Bw.09			4	
Bw.0A			F	
Bw.0B			5	
Bw.0C			0	
Bw.0D			Ø	
Bw.0E			7	
Bw.0F			7	

Bw.n Bit output	Information	Master station side device	Slice No.	Module name
Bw. □0				
Bw. □1				
Bw. □2				
Bw. □ 3				
Bw. □ 4				
Bw. □ 5				
Bw. □ 6				
Bw. □7				
Bw. □ 8				
Bw. □ 9				
Bw. □A				
Bw. □B				
Bw. □C				
Bw. 🗖 D				
Bw. 🗖 E				
Bw. □F				

(2) Ew Error clear area

Ew.n Error clear	Information	Master station side device	Slice No.	Module name
Ew. 00	Error clear request		0	
Ew. 01	System area (0 fixed)		0	
Ew. 02	System area (0 fixed)			511H-PB
Ew. 03	System area (0 fixed)		1	
Ew. 04	Error clear request		0	
Ew. 05	System area (0 fixed)		2	511250
Ew. 06			2	
Ew. 07			3	
Ew. 08				
Ew. 09			4	
Ew.0A			_	
Ew.0B			5	
Ew.0C			0	
Ew.0D			6	
Ew.0E			7	
Ew.0F			/	

Ew.n Error clear	Information	Master station side device	Slice No.	Module name
Ew. □0				
Ew. □1				
Ew. □2				
Ew. 🗖 3				
Ew. □4				
Ew. □ 5				
Ew. □ 6				
Ew. □7				
Ew. 🗖 8				
Ew. □ 9				
Ew. 🗆 A				
Ew. 🗆 B				
Ew. 🗆 C				
Ew. 🗖 D				
Ew. 🗆 E				
Ew. □F				

(3) Ww Word output area

Ww.n Word output	Information	Master station side device	Slice No.	Module name
Ww. □0				
Ww. □1				
Ww. □2				
Ww. □ 3				
₩w. 🗖 4				
Ww. □ 5				
Ww. □ 6				
₩w. 🛛 7				
Ww. □ 8				
Ww. □ 9				
Ww. 🗆 A				
Ww. 🗆 B				
Ww. □C				
Ww. 🗖 D				
Ww. 🗆 E				
Ww. □F				

MEMO

INDEX

Ind

[B]	
Bit Input Area	
Bit Output Area	
Br]	
Bus terminator	5-12
Bw	

[C]

8- 3
3-20
8-17
3-11
3-11
3-20

[D]

- Data size	3- 5	3-14
	0 0,	0 14

[E]

Error Clear Area	3-18, 3-25
Error clear request	3-25
Error code	
Error code reading operation	9- 8
Error code read request	8-10
Error Information Area	
Error history	
Error history read request	8-14
Er	
E w	3-18, 3-25
Extended diagnostic information	4- 9
Extended diagnostic information	
notification function	4- 8

[F]

FDL Address	6-12
FDL address setting switch	5- 6
FREEZE	4- 5

[G]

Global control function 4-	5
Group identification number	2

[I]

Input data	3- 5
Input transmission delay time	3-30
I/O data communication function	4- 3
I/O data consistency function	4-14

[M]

Maximum Input/Output points	6- 3
Module Status Area	. 3-10, 3-24
Mr	. 3-10, 3-24

[O]

4-22
.5-5
.8-6
3-14
3-31

[P]

Performance specifications	.3-1
Processing Time	3-27
PROFIBUS cable	5-11

[R]

Reset operation5-9

[S]

Self-diagnostics	5-10
Select Modules	6- 2
Setting of output status at module error	
	4-17
Status monitor	4-19
ST bus cycle time	3-28
Sw	3-19
Swap function	4-11
SYNC	4- 5
System Area	3-19

[T]

Transmission distance	3-	2
Transmission speed	3-	2

[U]

UNFREEZE	4- 5
UNSYNC	4- 5
Used word input/output points	6- 9
User parameter	6-12
User parameter size	6- 4

[W]

Watchdog time	6-12
Word Input Area	3-11
Word Output Area	3-21
Wr	3-12
Ww	3-21

[0 to 9]

128-point mode	3-6,	3-15
256-point mode	3-7,	3-16
32-point mode	3-5,	3-14
64-point mode	3-6,	3-15

Ind

WARRANTY

Please confirm the following product warranty details before starting use.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the dealer or Mitsubishi Service Company. Note that if repairs are required at a site overseas, on a detached island or remote place, expenses to dispatch an engineer shall be charged for.

[Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place.

Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

- (1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
- (2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
 - 1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
 - 2. Failure caused by unapproved modifications, etc., to the product by the user.
 - 3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
 - 4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
 - 5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
 - 6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
 - 7. Any other failure found not to be the responsibility of Mitsubishi or the user.

2. Onerous repair term after discontinuation of production

- (1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
- (2) Product supply (including repair parts) is not possible after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

4. Exclusion of chance loss and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to damages caused by any cause found not to be the responsibility of Mitsubishi, chance losses, lost profits incurred to the user by Failures of Mitsubishi products, damages and secondary damages caused from special reasons regardless of Mitsubishi's expectations, compensation for accidents, and compensation for damages to products other than Mitsubishi products and other duties.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

6. Product application

- (1) In using the Mitsubishi MELSEC programmable logic controller, the usage conditions shall be that the application will not lead to a major accident even if any problem or fault should occur in the programmable logic controller device, and that backup and fail-safe functions are systematically provided outside of the device for any problem or fault.
- (2) The Mitsubishi general-purpose programmable logic controller has been designed and manufactured for applications in general industries, etc. Thus, applications in which the public could be affected such as in nuclear power plants and other power plants operated by respective power companies, and applications in which a special quality assurance system is required, such as for Railway companies or National Defense purposes shall be excluded from the programmable logic controller applications.

Note that even with these applications, if the user approves that the application is to be limited and a special quality is not required, application shall be possible.

When considering use in aircraft, medical applications, railways, incineration and fuel devices, manned transport devices, equipment for recreation and amusement, and safety devices, in which human life or assets could be greatly affected and for which a particularly high reliability is required in terms of safety and control system, please consult with Mitsubishi and discuss the required specifications.

MITSUBISHI ELECTRIC	EUROPE
EUROPE B.V.	
German Branch	
Gothaer Straße 8	
D-40880 Ratingen	
Phone: +49 (0)2102 486-0	
Fax: +49 (0)2102 486-1120	
e mail: megfamail@meg.me	e.com
MITSUBISHI ELECTRIC	FRANCE
EUROPE B.V.	
French Branch	
25, Boulevard des Bouvets	
Phono: 122 1 55 69 55 69	
Filone. +33 1 33 08 33 08 Fav. ±33 1 55 68 56 85	
e mail: factory automation@fra	meerom
	IKELAND
EUNUPE D.V. Irish Branch	
Westgate Business Park Ral	llymount
IRL-Dublin 24	iyinount
Phone: +353 (0) 1 / 419 88 (00
Fax: +353 (0) 1 / 419 88 90	
e mail: sales.info@meir.mee	e.com
	ΙΤΔΙΥ
FUROPE B.V	IIALI
Italian Branch	
Via Paracelso 12	
I-20041 Agrate Brianza (N	11)
Phone: +39 039 60 53 1	
Fax: +39 039 60 53 312	
e mail: factory.automation@it.	mee.com
MITSUBISHI ELECTRIC	SPAIN
EUROPE B.V.	
Spanish Branch	
Carretera de Rubí 76-80	
E-08190 Sant Cugat del Va	alles
Phone: +34 9 3 565 3131	
rdx: +34 9 3 309 2940 a mail: industrial@sn maa a	om
MITSUBISHI ELECTRIC	UK
EUROPE B.V.	
UN DIdiich Travellers Lane	
GB-Hatfield Horts AI 10.8	VR
OD-Hatheld Herts, ALIV 0	ND O
Phone: +44 (0) 1707 / 27 61	00
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95	00
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95 e mail: automation@meuk.r	00 mee.com
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95 e mail: automation@meuk.r MITSUBISHI ELECTRIC	mee.com
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95 e mail: automation@meuk. MITSUBISHI ELECTRIC CORPORATION	00 mee.com JAPAN
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95 e mail: automation@meuk.r MITSUBISHI ELECTRIC CORPORATION Office Tower "7" 14 F	00 mee.com JAPAN
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95 e mail: automation@meuk.r MITSUBISHI ELECTRIC CORPORATION Office Tower "Z" 14 F 8-12.1 chome. Harumi Chuc	00 mee.com JAPAN o-Ku
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95 e mail: automation@meuk.r MITSUBISHI ELECTRIC CORPORATION Office Tower "Z" 14 F 8-12,1 chome, Harumi Chuc Tokyo 104-6212	00 <u>mee.com</u> JAPAN p-Ku
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95 e mail: automation@meuk.r MITSUBISHI ELECTRIC CORPORATION Office Tower "Z" 14 F 8-12,1 chome, Harumi Chuc Tokyo 104-6212 Phone: +81 3 622 160 60	00 <u>mee.com</u> JAPAN p-Ku
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95 e mail: automation@meuk.r MITSUBISHI ELECTRIC CORPORATION Office Tower "Z" 14 F 8-12,1 chome, Harumi Chuc Tokyo 104-6212 Phone: +81 3 622 160 60 Fax: +81 3 622 160 75	oo <u>mee.com</u> JAPAN p-Ku
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95 e mail: automation@meuk. MITSUBISHI ELECTRIC CORPORATION Office Tower "Z" 14 F 8-12,1 chome, Harumi Chuc Tokyo 104-6212 Phone: +81 3 622 160 60 Fax: +81 3 622 160 75 MITSUBISHI ELECTRIC	DU <u>mee.com</u> JAPAN D-Ku
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95 e mail: automation@meuk.r MITSUBISHI ELECTRIC CORPORATION Office Tower "Z" 14 F 8-12,1 chome, Harumi Chuc Tokyo 104-6212 Phone: +81 3 622 160 60 Fax: +81 3 622 160 75 MITSUBISHI ELECTRIC AUTOMATION	uu <u>mee.com</u> JAPAN D-Ku USA
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95 e mail: automation@meuk.r MITSUBISHI ELECTRIC CORPORATION Office Tower "Z" 14 F 8-12,1 chome, Harumi Chuc Tokyo 104-6212 Phone: +81 3 622 160 60 Fax: +81 3 622 160 75 MITSUBISHI ELECTRIC AUTOMATION 500 Corporate Woods Parky	uu <u>mee.com</u> JAPAN D-Ku USA Way
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95 e mail: automation@meuk.r MITSUBISHI ELECTRIC CORPORATION Office Tower "Z" 14 F 8-12,1 chome, Harumi Chuc Tokyo 104-6212 Phone: +81 3 622 160 60 Fax: +81 3 622 160 75 MITSUBISHI ELECTRIC AUTOMATION 500 Corporate Woods Parky Vernon Hills, IL 60061	oo <u>mee.com</u> JAPAN o-Ku USA way
Phone: +44 (0) 1707 / 27 61 Fax: +44 (0) 1707 / 27 86 95 e mail: automation@meuk.r MITSUBISHI ELECTRIC CORPORATION Office Tower "Z" 14 F 8-12,1 chome, Harumi Chuc Tokyo 104-6212 Phone: +81 3 622 160 60 Fax: +81 3 622 160 75 MITSUBISHI ELECTRIC AUTOMATION 500 Corporate Woods Parky Vernon Hills, IL 60061 Phone: +1 847 478 21 00	uu mee.com JAPAN o-Ku USA way

EUROPEAN REPRESENTATIVES GEVA AUSTRIA Wiener Straße 89 AT-2500 Baden Phone: +43 (0)2252 / 85 55 20 Fax: +43 (0)2252 / 488 60 e mail: office@geva.at **TEHNIKON** BELARUS Oktjabrskaya 16/5, Ap 704 BY-220030 Minsk Phone: +375 (0)17 / 2104626 Fax: +375 (0)17 / 2275830 e mail: tehnikon@belsonet.net BELGIUM Getronics b.v. **Control Systems** Pontbeeklaan 43 BE-1731 Asse-Zellik Phone: +32 (0)2 / 467 17 51 Fax: +32 (0)2 / 467 17 45 e mail: infoautomation@getronics.com TELECON CO. **BUI GARIA** 4, A. Ljapchev Blvd. BG-1756 Sofia Phone: +359 (0)2 / 97 44 058 Fax: +359 (0)2 / 97 44 061 e mail: -INEA CR d.o.o. CROATIA Losiniska 4 a HR-10000 Zagreb Phone: +385 (0) 1 / 36 940-01 Fax: +385 (0) 1 / 36 940-03 e mail: inea@inea.hr **C7FCH RFPUBLIC** AutoCont Control Systems s.r.o. Nemocnicni 12 CZ-70200 Ostrava 2 Phone: +420 59 / 6152 111 Fax: +420 59 / 6152 562 e mail: consys@autocont.cz DENMARK louis poulsen industri & automation Geminivej 32 DK-2670 Greve Phone: +45 (0)43 / 95 95 95 Fax: +45 (0)43 / 95 95 91 e mail: lpia@lpmail.com **ESTONIA** UTU Elektrotehnika AS Pärnu mnt.160i EE-10621 Tallinn Phone: +372 (0)6 / 51 72 80 Fax: +372 (0)6 / 51 72 88 e mail: utu@utu.ee UTU POWEL OY FINLAND Box 236 FIN-28101 Pori Phone: +358 (0)2 / 550 800 Fax: +358 (0)2 / 550 8841 e mail: tehoelektroniikka@urhotuominen.fi UTECO A.B.E.E. GREECE 5, Mavrogenous Str. GR-18542 Piraeus Phone: +302 (0)10 / 42 10 050 Fax: +302 (0)10 / 42 12 033 e mail: uteco@uteco.gr Meltrade Automatika Kft. HUNGARY 55, Harmat St. HU-1105 Budapest Phone: +36 (0)1 / 2605 602 Fax: +36 (0)1 / 2605 602 e mail: office@meltrade.hu SIA POWEL LATVIA Lienes iela 28 LV-1009 Riga Phone: +371 784 2280 Fax: +371 784 2281 e mail: utu@utu.lv

EUROPEAN REPRESENTATIVES LITHUANIA UAB UTU POWEL Savanoriu Pr. 187 LT-2053 Vilnius Phone: +370 (0)52323-101 Fax: +370 (0)52322-980 e mail: powel@utu.lt MOLDOVA Intehsis Srl Cuza-Voda 36/1-81 MD-2061 Chisinau Phone: +373 (0)2 / 562 263 Fax: +373 (0)2 / 562 263 e mail: intehsis@mdl.net NETHERLANDS Getronics b.v. **Control Systems** Donauweg 2 B NL-1043 AJ Amsterdam Phone: +31 (0)20 / 587 6700 Fax: +31 (0)20 / 587 6839 e mail: info.gia@getronics.com Motion Control NFTHFRI ANDS Automation b.v. Markenweg 5 NL-7051 HS Varsseveld Phone: +31 (0)315 / 257 260 Fax: +31 (0)315 / 257 269 e mail: **Beijer Electronics AS** NORWAY Teglverksveien 1 NO-3002 Drammen Phone: +47 (0)32 / 24 30 00 Fax: +47 (0)32 / 84 85 77 e mail: info@beijer.no MPL Technology Sp. z o.o. POLAND ul. Sliczna 36 PL-31-444 Kraków Phone: +48 (0)12 / 632 28 85 Fax: +48 (0)12 / 632 47 82 e mail: krakow@mpl.pl Sirius Trading & Services srl ROMANIA Str. Biharia Nr. 67-77 RO-013981 Bucuresti 1 Phone: +40 (0) 21 / 201 1146 Fax: +40 (0) 21 / 201 1148 e mail: sirius@siriustrading.ro ACP Autocomp a.s. **SLOVAKIA** Chalupkova 7 SK-81109 Bratislava Phone: +421 (02)5292-2254 Fax: +421 (02)5292-2248 e mail: info@acp-autocomp.sk SLOVENIA INEA d.o.o. Stegne 11 SI-1000 Ljubljana Phone: +386 (0)1 513 8100 Fax: +386 (0)1 513 8170 e mail: inea@inea.si **Beijer Electronics AB** SWEDEN Box 426 S-20124 Malmö Phone: +46 (0)40 / 35 86 00 Fax: +46 (0)40 / 35 86 02 e mail: info@beijer.de ECONOTEC AG SWIT7FRI AND Postfach 282 CH-8309 Nürensdorf Phone: +41 (0)1 / 838 48 11 Fax: +41 (0)1 / 838 48 12 e mail: info@econotec.ch GTS TURKEY Darülaceze Cad. No. 43A KAT: 2 **TR-80270 Okmeydani-Istanbul** Phone: +90 (0)212 / 320 1640 Fax: +90 (0)212 / 320 1649 e mail: gts@turk.net

EUROPEAN REPRESENTATIVES

CSC Automation UKRAINE 15, M. Raskova St., Fl. 10, Off. 1010 UA-02002 Kiev Phone: +380 (0)44 / 238 83 16 Fax: +380 (0)44 / 238 83 17 e mail: csc-a@csc-a.kiev.ua

EURASIAN REPRESENTATIVE

CONSYS RUSSIA Promyshlennaya St. 42 **RU-198099 St Petersburg** Phone: +7 812 / 325 36 53 Fax: +7 812 / 325 36 53 e mail: consys@consys.spb.ru ELEKTROSTYLE RUSSIA ul. Garschina 11 RU-140070 Moscow Oblast Phone: +7 095/ 557 9756 Fax: +7 095/746 8880 e mail: mjuly@elektrostyle.ru ELEKTROSTYLE RUSSIA Krasnij Prospekt 220-1, Office 312 RU-630049 Novosibirsk Phone: +7 3832 / 10 66 18 Fax: +7 3832 / 10 66 26 e mail: elo@elektrostyle.ru ICOS RUSSIA Ryazanskij Prospekt, 8A, Office 100 RU-109428 Moscow Phone: +7 095 / 232 0207 Fax: +7 095 / 232 0327 e mail: mail@icos.ru SMENA RUSSIA Polzunova 7 RU-630051 Novosibirsk Phone: +7 095 / 416 4321 Fax: +7 095 / 416 4321 e mail: smena-nsk@yandex.ru SSMP Rosgidromontazh Ltd RUSSIA 23, Lesoparkovaya Str. RU-344041 Rostov On Don Phone: +7 8632 / 36 00 22 Fax: +7 8632 / 36 00 26 e mail: STC Drive Technique RUSSIA Poslannikov per., 9, str.1 RU-107005 Moscow Phone: +7 095 / 786 21 00 Fax: +7 095 / 786 21 01 e mail: info@privod.ru

MIDDLE EAST REPRESENTATIVE

SHERF Motion Techn. Ltd ISRAEL Rehov Hamerkava 19 IL-58851 Holon Phone: +972 (0)3 / 559 54 62 Fax: +972 (0)3 / 556 01 82 e mail: —

AFRICAN REPRESENTATIVE

CBI Ltd SOUTH AFRICA Private Bag 2016 **ZA-1600 Isando** Phone: +27 (0)11 / 928 2000 Fax: +27 (0)11 / 392 2354 e mail: cbi@cbi.co.za

